Process for the cold molding of particulate materials

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S016000, C524S494000, C524S556000, C524S563000, C524S567000, C524S571000, C524S577000, C524S579000, C264S122000, C264S126000

Reexamination Certificate

active

06774161

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a process for the cold molding of particulate materials, in particular of fiber materials, using, as binders, non-crosslinkable, thermoplastic polymers, in the form of polymer powder or in the form of an aqueous polymer dispersion.
2. Background Art
Composite materials based on fiber materials are used in the automotive industry, aircraft industry, and construction industry. The sheets have to be stiff and sound-absorbent, and have to have adequate heat resistance. There are various production processes for these composite materials. An example of an application for the automotive industry is the roofliner. To produce roofliners, the desired properties are achieved via the combination of polyester fibers and bicomponent polyester fibers (bico fibers) with glass fiber mats, the glass fiber mats being used to increase stiffness and heat resistance. The bico fibers have a core material with high melting point and a shell with low melting point. In the cold molding process, polyester nonwovens and glass fiber mats are heated at a temperature above the melting point of the fiber shell material and then press-molded at low temperature to give a molding. The temperatures in the heating phase are from 160 to 240° C., depending on melting point, and the molding temperature is well below the melting point of the fiber shell, at from about 20 to 60° C. In the press, the fibers become bonded during cooling under pressure. This procedure is termed cold molding.
Since the processing of glass fiber leads to skin irritation and poses problems during recycling, novel solutions are being sought which do not require such fibers. U.S. Pat. No. 6,214,456 describes the production of a roofliner using bico fiber, polyurethane foam being used for reinforcement instead of glass fiber. A disadvantage is the inadequate sound absorption of the resultant composite materials. In U.S. Pat. No. 6,156,682, the composite material is reinforced by using thermally crosslinkable (thermosetting) polymers, without glass fiber. U.S. Pat. No. 5,888,616 discloses the disadvantages of the use of thermally crosslinkable polymers: the materials bonded therewith cannot later be recycled. The latter publication therefore describes the production of recyclable materials using glass fiber, polyester fiber, and polyester bico fiber. The polyester fibers have a variety of titers and melting points.
SUMMARY OF THE INVENTION
An object of the present invention is to provide composite materials which, even without glass fiber content, have high heat resistance and are recyclable. These and other objects are met through the use of specific polymer powders or aqueous dispersions thereof as cold molding binders.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
The invention thus provides a process for the cold molding of particulate materials, where the binder and the material to be bound are first preheated to a temperature of from 160 to 240° C., and then, preferably within a period of from 1 to 20 sec, at a temperature less than 80° C., and at a pressure of from 1 to 120 bar, are press-molded to give a molding, wherein as a binder, a polymer in the form of a polymer powder or in the form of an aqueous polymer dispersion thereof is employed, the glass transition temperature Tg of the polymer being greater than 80° C. and its complex viscosity being less than 15,000 Pa·s at 190° C., made from one or more comonomer units from the group consisting of vinyl esters of unbranched or branched (“optionally branched”) alkylcarboxylic acids having from 1 to 18 carbon atoms, (meth)acrylic esters of branched or unbranched (“optionally branched”) alcohols having from 1 to 15 carbon atoms, dienes, olefins, vinylaromatics, and vinyl halides.
Suitable vinyl esters are vinyl esters of optionally branched carboxylic acids having from 1 to 18 carbon atoms. Preferred vinyl esters are vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl laurate, 1-methylvinyl acetate, vinyl pivalate, and vinyl esters of &agr;-branched monocarboxylic acids having from 5 to 11 carbon atoms, examples being VeoVa9® or VeoVa10® (trade names of Shell). Vinyl acetate is particularly preferred.
Suitable monomers from the (meth)acrylic ester group are esters of optionally branched alcohols having from 1 to 15 carbon atoms. Preferred (meth)acrylic esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, 2-ethylhexyl acrylate, and norbornyl acrylate. Particular preference is given to methyl acrylate, methyl methacrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and norbornyl acrylate.
Suitable dienes are 1,3-butadiene and isoprene. Examples of copolymerizable olefins are ethene and propene. Vinylaromatics which may be copolymerized include styrene and vinyltoluene. From the group of the vinyl halides, vinyl chloride is usually used.
In one preferred embodiment, the polymer also contains from 0.1 to 50% by weight, based on the total weight of the polymer, of one or more comonomer units from the group consisting of carboxy-functional and hydroxy-functional monomers.
Suitable carboxy-functional comonomers are ethylenically unsaturated mono- and dicarboxylic acids, preferably acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, and maleic acid. The carboxy function may also be introduced into the copolymer by copolymerizing maleic anhydride. Suitable hydroxy-functional comonomers are hydroxyalkyl acrylates and hydroxyalkyl methacrylates having a C
1
-C
8
-alkyl radical, preferably hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate.
Particular preference is given to carboxy-functional comonomer units, those most preferred being those derived from acrylic acid, from methacrylic acid, from crotonic acid, from itaconic acid, from fumaric acid, from maleic acid, or from maleic anhydride. The proportion of functional units is particularly preferably from 0.1 to 25% by weight, most preferably from 3 to 20% by weight, based in each case on the total weight of the copolymer.
Preference is given to the polymers mentioned below, which optionally also contain the functional-group-containing units as described immediately above: vinyl ester-ethylene copolymers such as vinyl acetate-ethylene copolymers; vinyl ester-ethylene-vinyl chloride copolymers, where the vinyl ester is preferably vinyl acetate and/or vinyl propionate and/or one or more copolymerizable vinyl esters such as vinyl laurate, vinyl pivalate, vinyl 2-ethylhexanoate, or vinyl esters of an alpha-branched carboxylic acid having from 5 to 11 carbon atoms, in particular vinyl versatate (VeoVa9®, VeoVa10®); vinyl acetate copolymers with one or more copolymerizable vinyl esters such as vinyl laurate, vinyl pivalate, vinyl 2-ethylhexanoate, or vinyl esters of an alpha-branched carboxylic acid having from 5 to 11 carbon atoms, in particular vinyl versatate (VeoVa9®, VeoVa10®), optionally containing ethylene as well; vinyl ester-acrylic ester copolymers, in particular those of vinyl acetate and butyl acrylate and/or 2-ethylhexyl acrylate, optionally also containing ethylene; vinyl ester-acrylic ester copolymers of vinyl acetate and/or vinyl laurate, and/or vinyl versatate as the vinyl esters, and butyl acrylate or 2-ethylhexyl acrylate as the acrylic esters, further optionally containing ethylene.
Particular preference is given to (meth)acrylic ester polymers and to styrene polymers, for example copolymers of n-butyl acrylate and/or 2-ethylhexyl acrylate; copolymers of methyl methacrylate with butyl acrylate and/or 2-ethylhexyl acrylate, and/or 1,3-butadiene; styrene-1,3-butadiene copolymers and styrene (meth)acrylic ester copolymers such as styrene-butyl acrylate, styrene-methyl methacrylate-butyl acrylate, or stryene-2-ethylhexyl acrylate, where the butyl acrylate used may comprise n-, iso-, or tert-butyl acrylate.
The gr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the cold molding of particulate materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the cold molding of particulate materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the cold molding of particulate materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3269290

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.