Recombinant P53 adenovirus methods and compositions

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Genetically modified micro-organism – cell – or virus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S093100, C424S093600, C435S069100, C435S320100, C435S455000, C435S456000

Reexamination Certificate

active

06740320

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the area of recombinant technology. In some aspects, it concerns simplified and efficient methods of generating recombinant adenovirus. In other aspects, novel compositions and methods involving p53 adenovirus constructs are provided, including methods for restoring normal p53 functions and growth suppression to cells with abnormal p53.
2. Description of Related Art
Current treatment methods for cancer, including radiation therapy, surgery, and chemotherapy, are known to have limited effectiveness. Lung cancer alone kills more than 140,000 people annually in the United States. Recently, age-adjusted mortality from lung cancer has surpassed that from breast cancer in women. Although implementation of smoking-reduction programs has decreased the prevalence of smoking, lung cancer mortality rates will remain high well into the 21st century. The rational development of new therapies for lung cancer will depend on an understanding of the biology of lung cancer at the molecular level.
It is now well established that a variety of cancers are caused, at least in part, by genetic abnormalities that result in either the over expression of one or more genes, or the expression of an abnormal or mutant gene or genes. For example, in many cases, the expression of oncogenes is known to result in the development of cancer. “Oncogenes” are genetically altered genes whose mutated expression product somehow disrupts normal cellular function or control (Spandidos et al., 1989).
Most oncogenes studied to date have been found to be “activated” as the result of a mutation, often a point mutation, in the coding region of a normal cellular gene, i.e., a “proto-oncogene”, that results in amino acid substitutions in the expressed protein product. This altered expression product exhibits an abnormal biological function that takes part in the neoplastic process (Travali et al., 1990). The underlying mutations can arise by various means, such as by chemical mutagenesis or ionizing radiation. A number of oncogenes and oncogene families, including ras, myc, neu, raf, erb, src, fms, jun and abl, have now been identified and characterized to varying degrees (Travali et al., 1990; Bishop, 1987).
During normal cell growth, it is thought that growth-promoting proto-oncogenes are counterbalanced by growth-constraining tumor suppressor genes. Several factors may contribute to an imbalance in these two forces, leading to the neoplastic state. One such factor is mutations in tumor suppressor genes (Weinberg, 1991).
An important tumor suppressor gene is the gene encoding the cellular protein, p53, which is a 53 kD nuclear phosphoprotein that controls cell proliferation. Mutations to the p53 gene and allele loss on chromosome 17p, where this gene is located, are among the most frequent alterations identified in human malignancies. The p53 protein is highly conserved through evolution and is expressed in most normal tissues. Wild-type p53 has been shown to be involved in control of the cell cycle (Mercer, 1992), transcriptional regulation (Fields et al., 1990, and Mietz et al., 1992), DNA replication (Wilcock and Lane, 1991, and Bargonetti et al., 1991), and induction of apoptosis (Yonish-Rouach et al., 1991, and, Shaw et al., 1992).
Various mutant p53 alleles are known in which a single base substitution results in the synthesis of proteins that have quite different growth regulatory properties and, ultimately, lead to malignancies (Hollstein et al., 1991). In fact, the p53 gene has been found to be the most frequently mutated gene in common human cancers (Hollstein et al., 1991; Weinberg, 1991), and is particularly associated with those cancers linked to cigarette smoke (Hollstein et al., 1991; Zakut-Houri et al., 1985). The overexpression of p53 in breast tumors has also been documented (Casey et al., 1991).
One of the most challenging aspects of gene therapy for cancer relates to utilization of tumor suppressor genes, such as p53. It has been reported that transfection of wild-type p53 into certain types of breast and lung cancer cells can restore growth suppression control in cell lines (Casey et al., 1991; Takahasi et al., 1992). Although DNA transfection is not a viable means for introducing DNA into patients' cells, these results serve to demonstrate that supplying wild type p53 to cancer cells having a mutated p53 gene may be an effective treatment method if an improved means for delivering the p53 gene could be developed.
Gene delivery systems applicable to gene therapy for tumor suppression are currently being investigated and developed. Virus-based gene transfer vehicles are of particular interest because of the efficiency of viruses in infecting actual living cells, a process in which the viral genetic material itself is transferred. Some progress has been made in this regard as, for example, in the generation of retroviral vectors engineered to deliver a variety of genes. However, major problems are associated with using retroviral vectors for gene therapy since their infectivity depends on the availability of retroviral receptors on the target cells, they are difficult to concentrate and purify, and they only integrate efficiently into replicating cells.
Adenovirus vector systems have recently been proposed for use in certain gene transfer protocols, however, the current methods for preparing recombinant adenovirus have several drawbacks. These methods rely on calcium phosphate-mediated transfection of expression vectors and adenoviral plasmids into host cells and subsequent plaque assays on the transfected cells. These types of transfection steps and assays are inefficient and typically result in low levels of viral propagation.
There remains, therefore, a clear need for the development of new methods for introducing tumor suppressor genes, such as p53, into cells as a means for restoring growth suppression. Methods for producing recombinant adenovirus which avoid calcium-phosphate mediated transfection and agarose overlay for plaque assays would also be advantageous.
SUMMARY OF THE INVENTION
The present invention addresses the foregoing and other problems by providing efficient methods for producing recombinant adenovirus, such as p53 adenovirus, and effective means by which to restore p53 functions to cells with aberrant p53. Recombinant adenovirus vectors and virions are disclosed, as are methods of using such compositions to promote wild type p53 expression in cells with aberrant p53 functions, such as cancer cells. Also disclosed is a simplified protocol for propagating recombinant adenovirus using liposome-mediated DNA transfection followed by observation of cytopathic effect (CPE) and, preferably, polymerase chain reaction (PCR) analysis.
Furthermore, utilizing this new method for generating and propagating recombinant adenoviruses, it is envisaged that other genes may be incorporated into the virion genome. These genes could include tumor suppressor genes such as the retinoblastoma (rb) gene, antisense oncogenes, i.e. anti-c-myc and anti-k-ras, and other growth control related genes for cancer gene therapy.
Using the present invention the inventors have demonstrated a remarkable effect in controlling metastatic growth. The Ad5CMV-p53 recombinant adenovirus was shown to markedly reduce the growth rate of transformed cells. The virus inhibited tumorigenicity of virus-infected H358 cells. Furthermore it prevented orthotopic lung cancer growth when the virus was instilled intratracheally following the intratracheal inoculation of the H226Br cells. The inhibition of tumorigenicity also suggests that even transient expression of a high-level of the p53 protein may be enough to induce a tumoricidal effect.
In one specific embodiment, this invention concerns vector constructs for introducing wild type p53 genes into target cells, such as target cells suspected of having mutant or aberrant p53 genes, including malignant cell types. These embodiments involve the preparation of a gene expression or transcr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recombinant P53 adenovirus methods and compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recombinant P53 adenovirus methods and compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant P53 adenovirus methods and compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3269004

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.