Resin composition

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S593000, C524S560000, C524S602000, C525S220000, C525S328800, C525S330500, C525S374000, C525S376000, C525S382000

Reexamination Certificate

active

06770709

ABSTRACT:

TECHNICAL FIELD
The present invention relates to resin compositions excellent in crosslinking efficiency, solvent resistance or water resistance, which are useful for paints, adhesives, ink, or the like.
BACKGROUND ART
Compositions comprising a vinyl copolymer having a carbonyl group and a polyhydrazide are known as resins of ordinary temperature-crosslinking type useful for paints, adhesives, or the like.
For example, Japanese Published Examined Patent Application. No. 20991/83 discloses an aqueous resin emulsion prepared by adding a compound having at least two hydrazine residues in the molecule to an emulsion comprising carbonyl groups obtained by copolymerizing monomers having a carbonyl group. The emulsion has an excellent property of being capable of crosslinking at ordinary temperatures and useful as a one-liquid paint.
However, paint films formed from aqueous resin emulsions prepared using adipic dihydrazide and succinic dihydrzide as disclosed in the examples of the above publication are defective in that they have poor solvent resistance, water resistance and weatherability.
Japanese Published Examined Patent Application No. 17213/75 discloses a thermosetting coating composition comprising a copolymer obtained by reacting a polyamine with a vinyl copolymer prepared from a vinyl monomer having a carbonyl group in the molecule and other vinyl monomer, and an aminoplast resin and/or an epoxy resin.
DISCLOSURE OF THE INVENTION
An object of the present invention is to provide a resin composition which gives a cured resin excellent in crosslinking efficiency, solvent resistance, water resistance or mechanical properties.
The present invention provides a resin composition comprising:
(1) a vinyl copolymer obtained from a starting material containing vinyl monomer (a) which comprises at least one carbonyl group or aldehyde group and vinyl monomer (b) which is different from vinyl monomer (a) and capable of copolymerization;
(2) a hydrazide derivative represented by general formula (I):
 (wherein R
1
represents substituted or unsubstituted phenylene, substituted or unsubstituted cyclohexylene or alkylene; and R
2
and R
3
, which may be the same or different, each represent a single bond or alkylene) or a hydrazide derivative in which the amino group(s) of the hydrazide derivative represented by general formula (I) are protected with a low molecular carbonyl compound; and
(3) a polyamine compound represented by general formula (II):
 (wherein R
4
represents substituted or unsubstituted phenylene, substituted or unsubstituted cyclohexylene or alkylene; and R
5
and R
6
, which may be the same or different, each represent a single bond or alkylene) or the polyamine compound in which the amino group(s) of the polyamine compound represented by general formula (II) are protected with a low molecular carbonyl compound.
Hereinafter, the hydrazide derivative represented by general formula (I) and the polyamine compound represented by general formula (II) may be referred to merely as the hydrazide derivative and the polyamine compound, respectively.
Also, the vinyl copolymer obtained from a starting material containing vinyl monomer (a) which comprises at least one carbonyl group or aldehyde group and vinyl monomer (b) which is different from vinyl monomer (a) and capable of copolymerization may be referred to as the vinyl copolymer of the present invention.
The present invention is described in detail below.
In the definitions of the groups in general formulae (I) and (II), the alkylene includes straight-chain or branched alkylene groups having 1 to 12 carbon atoms, such as methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene and dodecylene.
The substituted phenylene and the substituted cyclohexylene each have 1 to 4 substituents. Examples of the substituents include lower alkyl and halogen atoms. The lower alkyl includes straight-chain or branched alkyl groups having 1 to 8 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl and octyl. The hologen atoms include fluorine, chlorine, bromine and iodine.
The preferred hydrazide derivatives are those wherein R
1
is alkylene, and R
2
and R
3
are single bonds. The preferred polyamine compounds are those wherein R
4
is alkylene, and R
5
and R
6
are single bonds.
Hereinafter % means wt %, unless otherwise specified. The term (meth)acrylate means methacrylate and acrylate. Similarly, each (meth)acrylic acid derivative means a methacrylic acid derivative and an acrylic acid derivative.
For producing the vinyl copolymer used in the present invention, vinyl monomer (a) comprising at least one carbonyl group or aldehyde group [hereinafter it may be referred to as monomer (a)] is used. Monomer (a), which serves as a component enabling crosslinking when introduced into a polymer, is a monomer comprising at least one carbonyl group or aldehyde group and a double bond capable of polymerization. Preferred monomers (a) are those in which the moiety of the carbonyl group is not a carboxyl group, a carbamoyl group or an ester group.
Specific examples of monomer (a) include acrolein, diacetone (meth)acrylamide, formylstyrol, vinyl methyl ketone, vinyl isobutyl ketone, (meth)acrylamide pivalic aldehyde, diacetone (meth)acrylate, acetonyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate acetylacetate, acetoacetoxyethyl (meth)acrylate, butanediol-1-(meth)acrylate-4-acetylacetate, (meth)acrylamide methylanisaldehyde and (meth)acryloyloxypropanal derivatives represented by the following general formula (III):
(wherein R
7
, R
8
, R
9
and R
10
, which may be the same or different, each represent a hydrogen atom or lower alkyl).
The lower alkyl has the same significance as defined above.
The preferred (meth)acryloyloxypropanal derivatives represented by general formula (III) are those in which R
7
, R
8
, R
9
and R
10
are alkyl having 1 to 4 carbon atoms.
Among the above-described monomers (a), acrolein, diacetone acrylamide and vinyl methyl ketone are preferred. Monomer (a) may be used singly, or two or more kinds of monomers (a) may be used in combination. Vinyl copolymers obtained by the use of two or more kinds of monomers (a) are also included in the vinyl copolymers used in the present invention.
Vinyl monomer (b) capable of copolymerization used for the production of the vinyl copolymer used in the present invention [hereinafter it may be referred to as monomer (b)] can be arbitrarily selected depending upon the purpose from those having at least one double bond capable of polymerization in the molecule.
Specific examples of monomer (b) include alkyl (meth)acrylates formed from an alcohol having 1 to 18 carbon atoms and (meth)acrylic acid, such as methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate and stearyl (meth)acrylate; aromatic vinyl compounds such as styrene, &agr;-methylstyrene and p-methylstyrene; hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate; glycol di(meth)acrylates such as ethylene glycol di(meth)acrylate and butanediol (meth)acrylate; alkylaminoalkyl (meth)acrylates such as dimethylaminoethyl (meth)acrylate; vinyl monomers comprising fluorine such as trifluoroethyl (meth)acrylate, pentafluoropropyl (meth)acrylate, perfluorocyclohexyl (meth)acrylate, 2,2,3,3-tetrafluoropropyl (meth)acrylate and &bgr;-(perfluorooctyl)ethyl (meth)acrylate; vinyl monomers comprising siloxane such as 1-[3-(meth)acryloxypropyl]-1,1,3,3,3-pentamethyldisiloxane, 3-(meth)acryloxypropyltris(trimethylsiloxane)silane and AK-5 (silicon macromonomer, Toa Gosei Kagaku Kogyo Co., Ltd.); vinyl monomers comprising a hydrolyzable silyl group such as vinyltrimethoxysilane, vinylmethyldimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane and 3-(meth

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resin composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resin composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resin composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3268800

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.