Method, apparatus and article to display flight information

Aeronautics and astronautics – Miscellaneous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C346S07700R, C346S07700R, C244S118500, C340S973000

Reexamination Certificate

active

06702229

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention is generally related to flight instrumentation, and more particularly to the display of flight information in a cockpit of an aircraft.
2. Background of the Invention
The visual cues used for situational awareness in ordinary activities and in clear-day flight are continuously obtained without training or conscious attention, and processed by a complex native neural processing network that can detect motion instantly without fixing on the moving object, and can then, in parallel, break complex images down into elements that are then processed separately. The first component of this system is the neural network covering the surface of the retina itself, in which signals from adjacent rods and cones are instantly inter-compared to detect motion anywhere in the entire field of vision without eye movement. Movement-detection signals and visual image data are then transmitted to the brain separately. The image data is further broken down and evaluated in separate brain regions. For example, detection and evaluation of parallelism between lines, or evaluation of geometric shapes including recognition of faces or instrument dials, are all done separately. The movement data and processed image data are then continuously coordinated to produce a largely subconscious dynamic mental image of position and movement in space. This occurs rapidly, requires no adult learning, and is directly linked to rapid responses, for example blinking the eye, or shielding the face to protect against a visually detected assault, or continuous maintenance of an upright position while walking through diverse environments. These responses persist in the face of stress, nausea, and disorientation. Much of this circuitry is hard wired, rapid, automatic, subconscious, and unlearned, and appears to be under genetic control.
In contrast, current flight instruments present processed data to the pilot. For example, movement with respect to world coordinates (climbing, diving, turning) are not indicated by moving points or objects, but are presented as rates of climbing, diving or turning, often indicated by a number, or needle or cursor positions. These have no analogues in real life. Our bodily sensors are designed, in contrast, to detect movement and not rates of movement. A basic assumption has been that images of individual instruments ought to be processed in the same ways, and at the same rates as the environmental inputs and conditions they represent. Long training and concentrated attention are required for instrument flight, which is extremely fatiguing under adverse conditions. Instrument flight is a learned skill, which can rapidly degenerate under conditions of extreme stress, terror, nausea, and disorientation. Thus instrument flight image processing is through a complex learned program that is easily degraded, and under the best conditions, requires more processing time than does the analogous natural process in a natural environment. It is evident that if the visual elements of a normal environment could be abstracted and their basic elements continuously presented in the cockpit environment, instrument flight could be vastly improved, done with less fatigue, with more attention to other flight tasks, and with much less training.
The objective of this invention, therefore, is to provide the same cues used in nature to provide continuously those visual elements required for situational awareness in flight or in other forms of transportation involving disorienting motion. An essential concept of the invention is to provide moving, largely peripheral, objects, icons, or points in space that mimic the essentials of natural experience, which essentials are acquired without conscious attention, with minimal learning, and would be always present in a flight environment. An additional objective is to provide a simple and ultimately inexpensive flight orientation system for small aircraft and gliders flown by non-professional pilots.
Orientation relative to the outside world, balance, rate and direction of movement are synthesized from efferent visual and vestibular signals, which in some cases can be in conflict. For example, when a pilot in a so called “graveyard spiral” breaks out of a cloud into clear air and sees the ground, visual cues quickly override misleading vestibular inputs, and world coordinates are established by basic neural circuits of the brain. Conscious thought and special training are not required for this reorientation.
The need to fly in low or no visibility situations led to the development of a basic set of instruments (i.e., turn and bank indicator, altimeter, compass and airspeed indicator). Level flight is achievable by using the rudder to set the needle of the turn and bank (or needle-ball) indicator to center, using the ailerons to set the ball in the center, and then adjusting the elevators in response to both the altimeter (altitude increasing or decreasing) and airspeed (increased in a descent, decreased in a climb). Precise flight in one direction is obtainable by reference to the compass, which also provides additional rate of turn information. Generating spatial orientation by observing a set of instruments requires long training, much of it in actual flight.
These instruments fail to provide many of the direct basic visual cues which are the dominant source of orientation information for humans. This paucity of spatially orienting cues combined with vestibular and other signals that are often in conflict with each other and with reality are contributing causes for disorientation in instrument flight. In particular, fluid in the semicircular canals only responds to rotational acceleration, and the vestibular sacs only respond to linear acceleration. Therefore the middle ear cannot respond to constant velocity motion. Hence a constant rate of rotation around any axis is not sensed, and, without other inputs, the subjective sensation is that of flight in a straight line. If an aircraft is banked during a turn so that centrifugal force is balanced by gravitational force, the subjective sensation is that the plane is in not only straight flight but level flight. Thus, pilots are taught to disregard the “seat of the pants” or vestibular and proprioceptive inputs, and to “fly the instrument panel” by synthesizing a mental image of attitude based on the instruments. Such synthesis is increasingly difficult to do in the presence of fatigue, injury, illness (including airsickness) or fear.
The gyro-horizon partially overcomes fundamental perception problems. The gyro-horizon provides a very small fixed (relative to the instrument panel) representation of the aircraft and an artificial horizon that moves behind the representation in response to a mechanical or electronic gyro, maintaining an orientation parallel to the actual horizon. The gyro-horizon presents the relative positions of the plane and the earth in pictorial form to provide a visual cue that can, with lengthy training, override vestibular inputs. The extensive training required demonstrates the gyro-horizon's failure to completely solve the basic problems. Additionally, studies of instrument flight demonstrate that the best pilots scan and inter-compare all instruments related to instrument flight, while the less efficient or less experienced pilots tend to fix on the gyro horizon.
“Heads up displays” (“HUDs”) have been developed to provide positional information which appears directly in front of the pilot. The images include optically collimated virtual images of instrument data arranged so that the eyes focus at optical infinity. In theory, this should provide a horizon that not only superimposes on the real horizon when it is visible, but is arranged so that the two superimpose when the latter is not visible. Many accidents are attributed to these displays. The problem appears to be a tendency of the pilot to fixate on a very small area rather than focusing at infinity, thus being visually distracted by objects around the display.
Instances i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method, apparatus and article to display flight information does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method, apparatus and article to display flight information, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method, apparatus and article to display flight information will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3264113

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.