Processes for preparing linoleic acid raw materials for...

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C554S030000, C554S126000, C554S163000, C554S169000, C514S558000, C514S560000

Reexamination Certificate

active

06762313

ABSTRACT:

BACKGROUND OF THE INVENTION
Polyunsaturated &ohgr;-3 and &ohgr;-6 fatty acids, such as &agr;-linoleic acid and linoleic acid, are among the fatty acids essential to mammals and human beings. Besides linoleic acid, other isomeric octadecadienoic acids occur in nature. They are distinguished by conjugated double bonds at carbon atoms 9 and 11, 10 and 12 and 11 and 13. These isomeric octadecadienoic acids are collectively referred to in the scientific literature as conjugated linoleic acids (abbreviation: CLAs) and have recently attracted increasing attention (
NUTRITION,
Vol. 19, No. 6, 1995).
Various working groups have reported on the significance of CLAs to the organism. Recently, Shultz et al. reported on the inhibiting effect on the in-vitro growth of human cancer cells (
Carcinogenesis
8, 1881-1887 (1987) and
Cancer Lett.
63, 125-133 (1992)). In addition, CLAs have a strong antioxidative effect so that, for example, the peroxidation of lipids can be inhibited (
Atherosclerosis
108, 19-25 (1994)).
The use of conjugated linoleic acid in animal feeds and, in this connection, also in human nutrition is known, for example, from WO 96/06605. EP 0 579 901 B relates to the use of conjugated linoleic acid for avoiding loss of weight or for reducing increases in weight or anorexia caused by immunostimulation in human beings or animals. WO 94/16690 is concerned with improving the efficiency of food utilization in animals by administering an effective quantity of conjugated linoleic acid.
CLA is obtained by so-called conjugation of intermediate products containing linoleic acid, i.e. products containing a carboxylic acid function with 18 carbon atoms and 2 double bonds in the 9- and 12-position which are both present in the cis-configuration. It is important during the conjugation reaction to ensure that only the two CLA main isomers (9cis, 11trans and 10trans, 12cis), of which the effect is described in the literature cited above, are formed. An isomer mixture like the CLA used for industrial purposes, for example in paint manufacture (for example Edenor® UKD 6010, a product of Cognis, Düsseldorf), is not wanted.
Pure CLA is often obtained by saponification of oils containing linoleic acid [WO 96/06605, EP 0 902 082 A1]. The disadvantage of these processes lies in the high level of unwanted isomers. These unwanted isomers can be separated by enzymatic esterification, as described in WO 97/18320. In order better to control the isomer content, the corresponding esters may also be used as intermediates. It is known that the corresponding esters can be produced by esterification of the fatty acids with methanol or ethanol. According to the literature, the methyl and ethyl esters of linoleic acid are particularly suitable starting materials for gentle conjugation [WO 99/47135]. There is no known reference to the particular suitability of any of the methods for producing methyl or ethyl linoleate in high purity with regard to the 9cis, 12cis-configuration. WO 99/47135 describes a process for the production of conjugated linoleic acid by esterification or transesterification under nonaqueous conditions in which the alkyl ester obtained is subsequently isomerized in another step.
Another problem in the production of CLA or CLA intermediates is that, hitherto, the necessary reduction in the C16 content and the simultaneous increase in the C18:2 content could not be achieved without fractional distillation in a column for the total quantity of crude ester. Instead, only part of the reactor contents is fractionated towards the end of distillation of the main fraction, with the result that the yields are unsatisfactory.
The problem addressed by the present invention was to provide raw materials for the production of conjugated linoleic acid (CLA), such as methyl or ethyl linoleate for example, from intermediate products rich in linoleic acid, with the provisos that
the C16 content would be reduced and the C18:2 content simultaneously increased,
9cis, 12cis configuration would remain intact to a high degree and
no uncontrolled pre-conjugations or isomerizations would occur during production of CLA raw material,
the process would be economical, i.e. could be carried out with high yields on an industrial scale.
BRIEF SUMMARY OF THE INVENTION
The present invention relates, in general, to food supplements and, more particularly, to a process for the production of raw materials for the production of conjugated linoleic acid.
The present invention relates to a process for the production of raw materials for the production of conjugated linoleic acid, characterized in that
(a) triglycerides containing at least 60% by weight of linoleic acid are transesterified with alcohols having a chain length of 1 to 4 carbon atoms at a temperature of 80 to 120° C. and
(b) the transesterification mixture thus obtained is subjected to distillation.
To this end, a triglyceride rich in linoleic acid, for example sunflower oil, preferably safflower oil, more preferably refined safflower oil, is transesterified with methanol, preferably ethanol. By comparison with esterification with linoleic acid, it has surprisingly been found that almost no unwanted pre-conjugations and isomerizations occur. The transesterification takes place under gentle conditions, i.e. without the use of inert gas or ethylene or propylene glycol.
DETAILED DESCRIPTION OF THE INVENTION
Transesterification
The fatty acid glycerides to be used as starting materials in accordance with the invention may be the usual natural vegetable or animal fats or oils. These include, for example, linola oil, sunflower oil and, preferably, safflower oil. The principal constituents of these fats and oils are glycerides of various types of fatty acids which contain considerable quantities of impurities, such as for example aldehyde compounds, phospholipid compounds and free fatty acids. These materials may be used either directly or after preliminary purification. They are fatty acid mixtures which contain at least 60%, preferably more than 70% and, more particularly, in excess of 75% by weight of conjugated linoleic acid. The reaction takes place under controlled conditions without the use of inert gas. The reaction is preferably carried out at a temperature in the range from 80 to 120° C., more preferably at a temperature of 85 to 100° C. and most preferably at a temperature of 88 to 95° C. The glycerol formed during the reaction is continuously removed via a coalescence separator and approximately two thirds of the total quantity of catalyst is continuously added during the reaction. Suitable catalysts are alkali metal and/or alkaline earth metal alcoholates or hydroxides, more particularly sodium methanolate and/or sodium glycerate and, in a particularly preferred embodiment, sodium ethylate. The reaction takes place over 4 to 7 hours and preferably over 5 to 6 hours. In the final step of the transesterification, the reaction mixture is neutralized with citric acid. Taking the reaction products preferably used into account, the process is preferably used for the production of a safflorethyl ester with a small content of unwanted isomers.
Distillation
The object of distilling the transesterified reaction mixture is to remove glycerides, free glycerol and soaps. In addition, it leaves the reaction product with a more attractive color. In addition, depending on the raw material, the palmitic acid content can be reduced and the linoleic acid content increased by distillation of the product. Initially, the excess ethanol is distilled off after application of a vacuum of 100 to 300 mbar. Free glycerol additionally accumulating during distillation of the ethanol is removed via the separator. Thereafter, the temperature is increased to 150-200° C. and preferably to 160-180° C. under a vacuum of 1 to 3 mbar. 5 to 10% of the first runnings are removed and the product is distilled to a residue of 5 to 10%. In order to obtain a high yield, fractional distillation may preferably be applied. In addition, in order simultaneously to reduce the C16

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Processes for preparing linoleic acid raw materials for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Processes for preparing linoleic acid raw materials for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Processes for preparing linoleic acid raw materials for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3252484

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.