Method and apparatus for the detection of fluorescent light...

Radiant energy – Luminophor irradiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S459100

Reexamination Certificate

active

06677596

ABSTRACT:

FIELD OF THE INVENTION
The present invention concerns a method for the detection of fluorescent light in scanning microscopy. Moreover, the invention concerns an apparatus for the detection of fluorescent light.
BACKGROUND OF THE INVENTION
Methods and apparatuses of the generic type have been known from practical use for some time. In scanning microscopy, a specimen is illuminated with a light beam in order to detect the reflected and/or fluorescent light emitted by the specimen. In multi-photon scanning microscopy, the fluorescence photons detected are attributable to a multi-photon excitation process in which the transition from one state of a fluorochrome into the excited state is accomplished by simultaneous absorption of multiple photons. The probability of an N-photon transition depends on the Nth power of the excitation light output of the illuminating light. To achieve high light outputs, the exciting light used for illumination is usually pulsed.
Reference is made, merely by way of example, to U.S. Pat. No. 5,034,613 and DE 44 14 940, which disclose confocal scanning microscopes in which a specimen is excited with a focused light beam; in this instance, two-photon transitions are accomplished with pulsed light. The pulse durations of the individual pulses are femtoseconds or picoseconds.
The generic methods and apparatuses are, however, very inefficient in terms of attainable fluorescent photon yield; there are various reasons for this. On the one hand, the fluorescent photon yield cannot be raised arbitrarily by increasing the illuminating light output. As soon as the saturation output of the fluorescent markers is reached, all the fluorescent markers are excited to fluoresce with one laser pulse. A further increase in illumination output would then have a disadvantageous effect in terms of the bleaching behavior of the fluorescent markers, and would entail a thermal load on the specimen. Further remarks on two-photon excitation of fluorescing specimens are made in the article “Two-Photon Molecular Excitation in Laser Scanning Microscopy,” by W. Denk, D. W. Piston, and W. W. Webb, in Handbook of Biological Confocal Microscopy, 1995, ed. J. B. Pawley, 445-458.
Also known per se, from DE 196 53 413 as well as EP 0 753 779 and DE 44 37 896 C1, are arrangements in which, by means of a rotating micro-lens disk or a reflection disk, a specimen is illuminated with exciting light at approximately 20 to 50 specimen points simultaneously.
SUMMARY OF THE INVENTION
It is therefore the object of the invention to provide a method so that the fluorescent photon yield of the fluorescing materials that are excited to fluoresce by multi-photon excitation is optimized or increased in order to enable optimum specimen detection.
The above object is accomplished by a method for the detection of fluorescent light in scanning microscopy comprising the steps of:
exciting fluorescing materials in a specimen region by means of multi-photon excitation,
adapting operating parameters of a light source for optimum fluorescent photon yield to the properties of the fluorescing material in the specimen region, wherein the light source causes multi-photon excitation,
illuminating multiple specimen regions simultaneously, and
detecting fluorescent light of the specimen regions simultaneously.
It is a further object of the invention to provide an apparatus by which the fluorescent photon yield of the fluorescing materials that are excited to fluoresce by multi-photon excitation is optimized or increased in order to enable optimum specimen detection.
The object is accomplished by an apparatus for the detection of fluorescent light comprising:
a scanning microscope with a light source for illuminating at least one specimen region,
means for exciting fluorescing materials in the at least one specimen region by means of multi-photon excitation,
means for adapting operating parameters of the light source for optimum fluorescent photon yield to the properties of the fluorescing material in the specimen region, wherein the light source causes multi-photon excitation,
means for illuminating multiple specimen regions simultaneously, and
means for detecting fluorescent light of the specimen regions simultaneously.
What has been recognized according to the present invention is firstly that the fluorescent photon yield of the fluorescent light of the fluorescent excitation induced by means of multi-photon excitation processes depends on several influencing variables. For example, the properties of the light source causing the multi-photon excitation, the system parameters of the confocal scanning microscope, and the properties of the fluorescing materials are critical. Only when all the influences affecting the fluorescent photon yield are matched and adapted to one another can optimized fluorescent excitation and fluorescent light detection be accomplished.
The lifetime of the excited states of the fluorescing materials is provided for as a possible property of the fluorescing materials to which the operating parameters of the light source causing the multi-photon excitation and/or the system parameters of the confocal microscope could be adapted. Also provided for is an adaptation to the effective cross section of the excitation of the fluorescing materials, to the excitation and/or emission wavelength, and/or an adaptation to the bleaching behavior of the fluorescing materials. These are thus the most important properties of the fluorescing materials to which the light source causing the multi-photon excitation, and the system parameters of the confocal scanning microscope, are to be adapted.
A plurality of variant methods, which will be discussed in more detail below, are provided for modifying the operating parameters of the light source causing the multi-photon excitation.
For one, the output of the light source could be correspondingly adjusted. In this context, the output of the light source would need to be made greater than or equal to the output which corresponds to the saturation output of the fluorescing materials. In confocal scanning microscopy in particular, the saturation output of the fluorescing materials depends on the illumination pattern used for multi-photon excitation of the fluorescing materials, since with increasing illumination volume, the light output to be introduced into the confocal scanning microscope correspondingly increases.
For optimum excitation of the fluorescing materials, the pulse duration of the light emitted by the light source could moreover be adjusted correspondingly. To influence the pulse duration of the light emitted by the light source, a prechirp unit such as is known, for example, from DE 44 37 896 C1 could be used. With this prechirp unit, in particular, light pulses that have experienced a pulse widening as a result of interactions with optical components such as, e.g. glass fibers or lenses, are compressed back to their original pulse duration. This prechirp unit could, however, in particularly advantageous fashion, be used to influence the pulse duration of the light emitted by the light source, in order to optimize the fluorescent photon yield of the fluorescing materials.
In particularly advantageous fashion, provision is made for the pulse repetition rate of the light emitted by the light source to be correspondingly adjusted. In particular, the pulse repetition rate of the light emitted from the light source is to be adjusted, or optionally varied, as a function of the lifetime of the excited states of the fluorescing materials and on the basis of their saturation behavior. Pulse repetition rates of 75 to 100 MHz are usually used for two-photon excitations of fluorescing materials; the use of pulse repetition rates in ranges from kHz to GHz can be useful for optimum fluorescent photon yield.
A modification of the pulse repetition rate could be achieved, in the context of mode-coupled light sources, by the fact that the resonator length of the light source is modified. A decrease in the resonator length would yield an increase in the pulse repetition rate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for the detection of fluorescent light... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for the detection of fluorescent light..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for the detection of fluorescent light... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3252022

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.