Energy activated electrographic printing process

Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Post imaging process – finishing – or perfecting composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S126200, C430S130000, C347S112000

Reexamination Certificate

active

06673503

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to printing processes generally and is more specifically related to a method of printing an image using a reactive toner by means of an electrographic printer, wherein one or more components of the toner are activated and react subsequent to printing, by the application of energy to the printed image.
BACKGROUND OF THE INVENTION
The use of computer technology allows substantially instantaneous printing of images. For example, video cameras or scanners may be used to capture a color image on a computer. The image may then be printed onto substrates from the computer by any suitable printing means capable of printing in multiple colors, including mechanical thermal printers, ink jet printers and electrophotographic or electrostatic printers. These printing technologies are widely practiced and well understood. The methods for making full color inks and toners are also well documented (L. B. Schein, “
Electrophotography and Development Physic
”; Springer Series in Electrophysics 14; Springer-Verlag, 1988). The substrates for these conventional applications, however, are limited to those that the printers can handle, invariably, smooth metal, plastic or papers of limited thickness.
Other techniques are well known in the art for printing onto clothing, other textile materials, and other objects including silk screening, digitally produced sublimation transfers, and mechanically bonded thermal transfers. For example, a process of thermal transfers, wherein the ink mechanically bonds to the substrate, is described in Hare, U.S. Pat. No. 4,773,953. The resulting mechanical image, as transferred, is a surface bonded image with a substantial ‘hand’ or a raised, plastic-like feel to the touch and relatively poor dimensional stability. In addition, the entire sheet is transferred with the non-imaged area as well, but without involving any chemical bonding or cross-linking process (U.S. Pat. Nos. 6,103,042, 5,978,077, 5,985,503, 4,066,802, 4,064,285, 5,981,077, 6,017,636, DE-A 27,27,223, EP-A 466,503, JP-A 63296982, WO 90/13063). It is also known through U.S. Pat. Nos. 5,785,790, 5,679,198, and 5,612,119 a screen printed support sheet, which may have an embedded layer of microspheres, printed with one or more layers of two-component colors based on polyester resin and an isocyanate hardener. The microspheres may have a reflective layer to allow the transferred image printed thereon to reflect light. If more than one color layer is printed onto the microspheres, then a two-component extender or glue that contains polyester is covered on top of each color layer. On top of the extender layer or single-color layer is applied a powder of polyester or polyamide elastomer, which is then fused into the color layer. Instead of screen printing, a color copier using a two-component toner may be used for applying the color coatings. The color coatings are subsequently covered with this elastomeric powder, which is then fused into the layer prior to transfer.
Conventional heat-melt thermal printing uses primarily non-active wax or wax-like materials such as hydrocarbon wax, carnauba wax, ester wax, paraffin wax, hot-melt resin, thermoplastic, or polymeric materials, etc. as heat-melt material. The resulting image has poor permanency since the conventional wax materials are not chemically bonded or otherwise permanently grafted to the substrate, but are temporarily and loosely bound to the final substrate by the melting of wax materials during the transfer process. The resulting image is not durable, with the wax materials being washed away during laundering of textile substrates on which the image is transferred, along with the dyes or colorants that form the image in the thermal ink layer.
Cooper, et al. in U.S. Pat. No. 4,216,283 teaches a xerographic process of dry image transfer with adhesive toner materials. The electrostatic image is developed with a low melting temperature dry toner composition containing a thermoplastic agent to give an image that is pressure-transferred to a receptor surface. This process uses both low melting temperature plasticizer and foamable microspheres to treat toner material in order to achieve the adhesiveness between toner and substrate. However, it does not chemically bind the toner to the final substrate and thus has poor image permanency.
The natural tendency of cotton fiber to absorb inks causes an image to lose its resolution and become distorted. Liquid inks, other than sublimation inks, wick, or are absorbed by, cotton or other absorbent substrates, resulting in printed designs of inferior visual quality, since the printed colors are not properly registered on the substrate. This is especially true when aqueous based ink paste is used for coating and fixing purposes as disclosed in U.S. Pat. No. 5,607,482. The substrates can be surface pre-coated or treated to improve the quality of images transferred onto substrates having a cotton component or other absorbent component with materials such as the coatings described in DeVries et al., U.S. Pat. No. 4,021,591. Application of polymer surface coating materials to the substrate allows the surface coating material to bond the ink layer to the substrate, reducing the absorbency of the ink by the cotton and improving the image quality. However, the gross surface coating on the substrate extends from the margins of the image after the image is applied to the substrate, and can be seen with the naked eye and adds hand to the fabric. Again the excess surface coating reduces the aesthetic quality of the printed image on the substrate. Furthermore, the surface coating tends to turn yellow with age, which is undesirable on white and other light colored substrates. Yellowing is accelerated with laundering, exposure to heat, chemicals, sunlight, or other harsh conditions. A method described in Hale, et al., U.S. Pat. No. 5,431,501, reduces the hand by printing a surface preparation material over the entire image, on the intermediate substrate, but not beyond the boundaries of the image. The image is then transferred from the medium to the final substrate by applying heat and pressure such that the surface preparation material permanently grafts the ink solids to the substrate.
The use of heat by electrographic devices such as laser printers and photocopiers presents the problem recognized in Hale U.S. Pat. Nos. 5,246,518, 5,248,363 and 5,302,223 of printing heat activated inks in a non-activated form by means of such devices. Laser printers and photocopiers in common use employ relatively high temperature fuser devices to thermally fuse or bind the ink to the substrate, since these devices anticipate that the image will be permanently bonded to the substrate which is printed by the device, and do not anticipate a subsequent thermal transfer of the printed image from the substrate.
Hale, et al., U.S. Pat. Nos. 5,555,813 and 5,590,600, describe the process of producing full color images electrostatically using sublimation toner. The images are printed onto a paper substrate and then heat transferred onto a polyester coated substrate at about 400° F. In sublimation transfer printing, solid dyes change to a gas at about 400° F., and have a high affinity for polyester at the activation temperature. Once the gasification bonding takes place, the ink is printed with substantial permanency, and is highly resistant to fading caused by environmental exposure, such as to light, or exposure to certain common chemical processes, such as cleaners or laundry products. However, these applications yield excellent results only when a synthetic material substrate is used, these dyes have a limited affinity for other materials, such as natural fabrics like cotton and wool.
In order to reduce the hand of a resin-formed image on fabric, a method described by Takama, U.S. Pat. No. 5,822,671, involves printing a resin-formed image onto a recording medium, such as cloth, followed by treatment of the recording medium with a plasticizer solution. The plasticizer penetrates between the resin molecules ther

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy activated electrographic printing process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy activated electrographic printing process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy activated electrographic printing process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3251439

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.