Systems and methods for freezing and storing...

Refrigeration – Processes – Congealing flowable material – e.g. – ice making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S356000

Reexamination Certificate

active

06698213

ABSTRACT:

TECHNICAL FIELD
This invention relates, in general, to biopharmaceutical material, preservation methods and systems, and more particularly to a system and method for freezing, and/or storing biopharmaceutical materials.
BACKGROUND ART
Preservation of biopharmaceutical materials is important in the manufacture, storage, sale and use of such materials. For example, biopharmaceutical materials are often preserved by freezing between processing steps and during storage. Similarly, biopharmaceutical materials are often frozen during transportation between manufacturing locations.
Currently, preservation of biopharmaceutical material often involves placing a container containing liquid biopharmaceutical material in a cabinet freezer, chest freezer or walk-in freezer and allowing the biopharmaceutical material to freeze. Specifically, the container is often placed on a shelf in the cabinet freezer, chest freezer or walk-in freezer and the biopharmaceutical material is allowed to freeze. These containers may be stainless-steel vessels, plastic bottles or carboys, or plastic flexible containers. They are typically filled with a specified volume to allow for freezing and expansion and then transferred into the freezers at temperatures typically ranging from negative 20 degrees Celsius to negative 70 degrees Celsius or below.
To ensure efficient use of available space inside the freezer, containers are placed alongside one another and sometimes are stacked into an array with varied spatial regularity. Under these conditions, cooling of the biopharmaceutical solution occurs at different rates depending on the exposure of each container to the surrounding cold air, and the extent to which that container is shielded by neighboring containers. For example, containers placed close to the cooling source or those on the outside of an array of containers would be cooled more rapidly than those further away from the cooling source and/or situated at the interior of the array.
In general, adjacent placement of multiple containers in a freezer creates thermal differences from container to container. The freezing rate and product quality then depend on the actual freezer load, space between the containers, and air movement in the freezer. This results in a different thermal history for the contents of the containers depending on their location in a freezer, for example. Also, the use of different containers for individual portions of a single batch of biopharmaceutical material may cause different results for portions of the same batch due to different thermal histories resulting from freezing in a multiple container freezer, particularly if the storage arrangement is haphazard and random. Another consequence of obtaining a range of freezing times is that certain containers may freeze so slowly that the target solute can no longer be captured within the ice phase, but remains in a progressively smaller liquid phase. This phenomenon is referred to as “cyroconcentration.” In some cases such cyroconcentration could result in pH change, unfolding, aggregation, or precipitation of the biopharmaceutical product, thus resulting in product loss.
Disposable containers such as plastic flexible containers or other flexible containers often are damaged, leading to loss of the biopharmaceutical material. Particularly, the volumetric expansion of the biopharmaceutical materials during freezing could generate excessive pressure in an over filled bag or in a pocket of occluded liquid adjoining the bag material, possibly leading to rupture or damage to the integrity of the bag. Moreover, handling of such disposable containers, such as plastic flexible containers, during freezing, thawing, or transportation of these containers often result in damage thereof, due, for example, to shock, abrasion, impact, or other mishandling events arising from operator errors or inadequate protection of the flexible containers in use.
Thus, there is a need for systems and methods for freezing, storing, and thawing of biopharmaceutical materials that are controlled, do not result in loss of biopharmaceutical material, but instead create conditions conducive to preserving the biopharmaceutical material in a uniform, repeatable fashion in a protected environment.
SUMMARY OF THE INVENTION
The present invention provides, in a first aspect, a system for freezing, thawing, and storing a biopharmaceutical material, which includes a flexible container adapted to receive liquid biopharmaceutical material therein for freezing, thawing, and storing. The container includes a first substantially trapezoidal portion attached to a second substantially trapezoidal portion.
The present invention provides, in a second aspect, a system for freezing, thawing, and storing biopharmaceutical material which includes a flexible container, a conduit and a temperature control unit. The flexible container is adapted to receive a liquid biopharmaceutical material therein for freezing and storing. The container may be formed of a first substantially flat sheet of flexible material joined together by a seam with a second substantially flat sheet of flexible material so as to lie substantially flat when empty and wherein the container fully encloses an interior portion for receiving the biopharmaceutical material. Also, the container is configured to form a three-dimensional shape when filled with the biopharmaceutical material wherein the three dimensional shape has a first side and a second side opposite the first side. The conduit is connected to the flexible container to allow the outside of the container to be in fluid communication with the interior portion of such conduit. The temperature control unit includes a first surface and a second surface facing the first surface. Also, the temperature control unit is configured to receive the flexible container therein, when the container is filled with the biopharmaceutical material. The container conforms to the shape of the interior of the temperature control unit and the first side and the second side of the container contact the first surface and the second surface of the temperature control unit. The first and/or second surfaces of the temperature control unit include a heat transfer surface(s).
The present invention provides, in a third aspect, a system for freezing, thawing, and storing a biopharmaceutical material which includes a flexible container and a temperature control unit. The flexible container is adapted to receive liquid biopharmaceutical material therein for freezing, thawing, and storing. Also, the container is configured to conform to a shape of an interior of a temperature control unit, in response to the container being substantially filled with the biopharmaceutical material. The temperature control unit includes at least one heat transfer surface and at least one movable wall adapted to compress the container to inhibit a clearance between the container and the at least one heat transfer surface. Further, the at least one moveable wall may include the at least one heat transfer surface or the at least one moveable wall may provide support for the flexible container without having heat transfer capabilities.
The present invention provides, in a fourth aspect, a system for freezing, thawing, and storing a biopharmaceutical material, which includes a container adapted to receive biopharmaceutical therein for freezing. The container is configured to conform to a shape of an interior of a temperature control unit, when the container is substantially filled with the biopharmaceutical material. Also, the container includes a first portion attached to a second portion wherein the first portion and the second portion are flat. Furthermore, the portions may be substantially trapezoidal portions, substantially triangular portions, substantially rectangular portions, substantially parallelepipedic portions, substantially elliptic portions, substantially semicircular portions, or substantially parabolic portions. The interior of the temperature control unit may have the same shape as the aforementioned

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for freezing and storing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for freezing and storing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for freezing and storing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3247263

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.