Optical module and optical communication system

Optical waveguides – With disengagable mechanical connector – Optical fiber to a nonfiber optical device connector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S088000, C385S093000, C385S094000

Reexamination Certificate

active

06739764

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an optical module that is useful for a communication system using an optical fiber. To be more specific, the present invention relates to an optical module that has an optical fiber, or an optical connector, for inputting or outputting a light signal, and a terminal for inputting or outputting an electric signal, and that has a light-emitting device or a detector inside the optical module. In particular, a package main body is formed of a ceramic plate multi-layer structure, and the present invention is useful for an optical nodule which is intended for ultrahigh-speed operation at 10 Gbit/s or more.
In recent years, the speed of optical communication systems is rapidly becoming faster, and prices thereof are also rapidly becoming lower. As a result, a faster optical module, a price of which is lower, is strongly demanded. As a package of the optical module, a plastic package, a metal package, a ceramic package, and the like, are being examined. However, an optical module intended for high-speed operation at 10 Gbit/s or more needs the connection of input and output terminals (leads) and a light-emitting element or a detector by incorporating a microwave line, a strip line, a microstrip line, a coplanar line, or the like, each impedance of which is matched, in this optical module in order to transfer an electric signal with low loss and low distortion. It is also necessary to connect a terminal or lead for inputting and outputting to a luminous element or a light-receiving element. Therefore, a high-speed optical module inevitably uses a ceramic package capable of including a built-in microwave line. The ceramic package is formed of a multilayer structure of ceramic, and is produced by a method called a green-sheet method. Using this method, an electrode pattern or a via hole can be formed arbitrarily on each layer, and thereby a high-frequency circuit, impedance of which is matched, can be provided on a package.
Usually, hermetic sealing of an optical module using a ceramic package can be achieved by using a metal cap. In addition, the metal cap is electrically connected to a terminal (pin) which is connected to a ground so that the cap functions as an electromagnetic shield. This reduces degradation in performance of the module caused by circumferential electromagnetic noise, and also reduces electromagnetic noise emitted from the module in reverse. In other words, the metal cap improves an EMC (electromagnetic compatibility) property of the optical module. In the optical module using the ceramic package, the first conventional method for securing a metal cap is welding; for example, the method is described in Japanese Patent Laid-open No. Hei 7-63957, Japanese Patent Laid-open No. 2000-164742, and the like. The welding ensures hermetic, and what is more, the welding can achieve excellent continuity with an electrode pattern provided on the package side. Connecting the electrode pattern to a ground pin permits the cap to function as an electromagnetic shield. The second conventional method is solder jointing: for example, the method is described in Japanese Patent Laid-open Nos. Hei 10-293230, Hei 10-170771, Hei 9-318849, and the like. The solder jointing can also ensure hermetic and continuity. Moreover, the third method is described in Japanese Patent Laid-open No. Hei 10-12808. In this method, a metal shield cap is secured to a multilayer ceramic substrate at low cost. This method relates to a RF power amplifier module used for mobile devices. According to the method, the metal cap is temporarily secured to the multilayer ceramic substrate by means of a mechanical structure; and when mounting the module to a mounting substrate by soldering, fusing solder and joining the cap to the substrate with the solder achieves continuity between the shield cap and a ground.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an optical module which uses a ceramic package, and is characterized by the following: low cost; an optical part is not damaged; and the metal cap can be secured while conductivity is reliably provided. According to the present invention, it is possible to provide, at low cost, an optical module that operates at super-high speed of 10 Gbit/s class, and that has an excellent EMC property.
As a background of the present invention, the conventional methods have the following disadvantages:
If a cap is secured by the first welding method, it is necessary to provide, in advance, voluminous metal (a ring for welding), which melts by welding, on the ceramic package side. More specifically, in advance, by means of Ag brazing solder, or the like, a metal ring such as kovar should be secured to the electrode pattern which is provided on the surface of the ceramic package. Therefore, the cost of the welding method is extremely high, which is a disadvantage to be considered.
In addition, if the metal cap is secured by solder jointing which is the second method, heating at about 200° C. is required. This produces a problem of thermal resistance of an optical part and an adhesive. For example, in an optical module having a pigtail of an optical fiber, heating changes the quality and shape of a sheath (nylon, etc.) of the fiber. In the worst case, an imposed stress causes microbending in a core wire of the fiber, resulting in a large optical loss. An optical module on which an optical connector for inputting and outputting a light signal is mounted also uses an adhesive made of epoxy, etc. to secure a ferrule constituting a connector to a module. Therefore, it has the following disadvantages: if the optical module is heated at about 200° C., the adhesive degrades, leading to a decrease in bond strength; and fitting the connector into the optical module, and taking the connector out from the module, increase an optical loss of the connector.
Furthermore, the third method also has a disadvantage that implementing an optical module on a mounting substrate by a reflow device causes heat damage to optical components.
Basic thoughts of the present invention will be described below.
The present invention provides an optical module comprising at least: a module base; a lid member having conductivity for covering the module base, the module base and the lid member forming a space therebetween; at least a semiconductor optical element and an electric signal wiring portion disposed in the space; and an optical path member which leads from the space to the outside of the module base, wherein the module base is made of ceramic; at least a part of the module base has a conductive member; at least a part of the conductive member has a conductive adhesive; the module base and the lid member are bonded together by the conductive adhesive; a conductive function portion possessed by the lid member is electrically connected to the conductive member which is provided on at least a part of the module base; the conductive member is electrically connected to a terminal which is connected to a ground; and the conductive adhesive is an organic conductivity adhesive.
Referring to typical and more specific modes, the present invention will be described in detail hereinafter.
One mode is an optical module comprising: an optical fiber or an optical connector, which is used for inputting and outputting a light signal; a terminal for inputting and outputting an electric signal; a main body, namely, a module base; a lid member, namely, a cap; a semiconductor optical element or a semiconductor integrated circuit element in a space surrounded by the main body and the cap, wherein ceramic plates, each having a wiring pattern, are laminated to form the multilayerd main body. The main body is provided with a microstrip line for transmitting a high-speed electric signal, and a high-frequency circuit including a via hole, a terminating resistor, a wire bond, and the like; and the terminal is connected to the semiconductor optical element or the semiconductor integrated circuit element. An electrode pattern is provided on at least a pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical module and optical communication system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical module and optical communication system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical module and optical communication system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3242327

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.