Multiple-thread processor for threaded software applications

Electrical computers and digital processing systems: processing – Instruction decoding – Decoding by plural parallel decoders

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06718457

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a processor architecture. More specifically, the present invention relates to a single-chip processor architecture including structures for multiple-thread operation.
2. Description of the Related Art
For various processing applications, an automated system may handle multiple events or processes concurrently. A single process is termed a thread of control, or “thread”, and is the basic unit of operation of independent dynamic action within the system. A program has at least one thread. A system performing concurrent operations typically has many threads, some of which are transitory and others enduring. Systems that execute among multiple processors allow for true concurrent threads. Single-processor systems can only have illusory concurrent threads, typically attained by time-slicing of processor execution, shared among a plurality of threads.
Some programming languages are particularly designed to support multiple-threading. One such language is the Java™ programming language that is advantageously executed using an abstract computing machine, the Java Virtual Machine™. A Java Virtual Machine™ is capable of supporting multiple threads of execution at one time. The multiple threads independently execute Java code that operates on Java values and objects residing in a shared main memory. The multiple threads may be supported using multiple hardware processors, by time-slicing a single hardware processor, or by time-slicing many hardware processors. In 1990 programmers at Sun Microsystems developed a universal programming language, eventually known as “the Java™ programming language”. Java™, Sun, Sun Microsystems and the Sun Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks, including UltraSPARC I and UltraSPARC II, are used under license and are trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
Java™ supports the coding of programs that, though concurrent, exhibit deterministic behavior, by including techniques and structures for synchronizing the concurrent activity of threads. To synchronize threads, Java™ uses monitors, high-level constructs that allow only a single thread at one time to execute a region of code protected by the monitor. Monitors use locks associated with executable objects to control thread execution.
A thread executes code by performing a sequence of actions. A thread may use the value of a variable or assign the variable a new value. If two or more concurrent threads act on a shared variable, the actions on the variable may produce a timing-dependent result, an inherent consequence of concurrent programming.
Each thread has a working memory that may store copies of the values of master copies of variables from main memory that are shared among all threads. A thread usually accesses a shared variable by obtaining a lock and flushing the working memory of the thread, guaranteeing that shared values are thereafter loaded from the shared memory to the working memory of the thread. By unlocking a lock, a thread guarantees that the values held by the thread in the working memory are written back to the main memory.
Several rules of execution order constrain the order in which certain events may occur. For example, actions performed by one thread are totally ordered so that for any two actions performed by a thread, one action precedes the other. Actions performed by the main memory for any one variable are totally ordered so that for any two actions performed by the main memory on the same variable, one action precedes the other. Actions performed by the main memory for any one lock are totally ordered so that for any two actions performed by the main memory on the same lock, one action precedes the other. Also, an action is not permitted to follow itself. Threads do not interact directly but rather only communicate through the shared main memory.
The relationships among the actions of a thread and the actions of main memory are also constrained by rules. For example, each lock or unlock is performed jointly by some thread and the main memory. Each load action by a thread is uniquely paired with a read action by the main memory such that the load action follows the read action. Each store action by a thread is uniquely paired with a write action by the main memory such that the write action follows the store action.
An implementation of threading incurs some overhead. For example, a single processor system incurs overhead in time-slicing between threads. Additional overhead is incurred in allocating and handling accessing of main memory and local thread working memory.
What is needed is a processor architecture that supports multiple-thread operation and reduces the overhead associated with multiple-thread operation.
SUMMARY OF THE INVENTION
A processor has an improved architecture for multiple-thread operation on the basis of a highly parallel structure including multiple independent parallel execution paths for executing in parallel across threads and a multiple-instruction parallel pathway within a thread. The multiple independent parallel execution paths include functional units that execute an instruction set including special data-handling instructions that are advantageous in a multiple-thread environment.
In accordance with one embodiment of the present invention, a general-purpose processor includes two independent processor elements in a single integrated circuit die. The dual independent processor elements advantageously execute two independent threads concurrently during multiple-threading operation. When only a single thread is executed on a first of the two processor elements, the second processor element is advantageously used to perform garbage collection, Just-In-Time (JIT) compilation, and the like. Illustratively, the independent processor elements are Very Long Instruction Word (VLIW) processors. For example, one illustrative processor includes two independent Very Long Instruction Word (VLIW) processor elements, each of which executes an instruction group or instruction packet that includes up to four instructions, otherwise termed subinstructions. Each of the instructions in an instruction group executes on a separate functional unit.
The two threads execute independently on the respective VLIW processor elements, each of which includes a plurality of powerful functional units that execute in parallel. In the illustrative embodiment, the VLIW processor elements have four functional units including three media functional units and one general functional unit. All of the illustrative media functional units include an instruction that executes both a multiply and an add in a single cycle, either floating point or fixed point.
In accordance with an aspect of the present invention, an individual independent parallel execution path has operational units including instruction supply blocks and instruction preparation blocks, functional units, and a register file that are separate and independent from the operational units of other paths of the multiple independent parallel execution paths. The instruction supply blocks include a separate instruction cache for the individual independent parallel execution paths, however the multiple independent parallel execution paths share a single data cache since multiple threads sometimes share data. The data cache is dual-ported, allowing data access in both execution paths in a single cycle.
In addition to the instruction cache, the instruction supply blocks in an execution path include an instruction aligner, and an instruction buffer that precisely format and align the full instruction group to prepare to access the register file. An individual execution path has a single register file that is physically split into multiple register file segments, each of which is associated with a particular functional

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiple-thread processor for threaded software applications does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiple-thread processor for threaded software applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple-thread processor for threaded software applications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3241992

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.