Method and apparatus for monitoring surface condition of a...

Radiant energy – Invisible radiant energy responsive electric signalling – Infrared responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S339110

Reexamination Certificate

active

06794650

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a method and apparatus for monitoring the surface condition of a bowling lane.
BACKGROUND OF THE INVENTION
An important aspect of the game of bowling is the surface condition of the bowling lane. One aspect of the lane condition relates to the amount and distribution of oil that is applied to the surface of the lane. Tournament play and competition requires that the lane surface be oiled with deference to very strict application standards in terms of the “number of units of oil” that may be applied to various areas of the lane surface since the oil affects how the bowling ball rolls down the bowling lane. In this regard, the lane surface can only have oil applied a certain distance down the lane. In addition, there are stringent requirements that govern the cross lane distribution of oil as well. Lanes are typically 39½ “boards” wide and tournament rules govern how oil may be applied across these boards.
In general, competitive bowlers such as professionals and serious amateurs, as well as bowling alley proprietors, do not have access to high quality information about the quantitative distribution of oil on a bowling lane surface. The subject continues to be a contentious matter between proprietors and patrons as part of an ongoing debate on how the chosen prescription for lane maintenance effects bowler's scores. Furthermore, the lack of hard data threatens the future of professional bowling and its elevation to an Olympic level sport.
Complicating the proper maintenance of lane condition is the fact that the lane dressing (i.e. oil) applied to the surface of a bowling lane migrates down and across the lane as bowling balls travel toward the pins. Known methods for measuring the amount of oil on a bowling lane involve the addition of ultra violet (UV) additives to the oil. These methods do not provide a direct measurement of the oil on the lane surface but instead, merely detect the concentration of dye or additive present in the oil. The potential adverse health effects which may occur from consistent and prolonged exposure to UV additives makes the use of such additives undesirable.
The first method for gathering information about oil on a lane surface is a process known as “taping”. This method involves using a device to affix adhesive tape applying constant pressure across a lane surface, and lifting oil along with the UV additives with the tape for laboratory analysis. This method is indirect in that it measures the amount of additive present, and not the oil. In addition, this method is destructive in that it modifies the lane surface. This method also has other disadvantages in that it is often inaccurate, manually tedious, expensive, and entirely impractical for routine use. Due to these constraints, measurements are only taken at widely spaced intervals along the length of the lane, and therefore, information provided is largely discontinuous.
The second qualitative method as disclosed in U.S. Pat. No. 4,982,601 to Troxell, requires the addition of dyes or additives to lane conditioners that are selectively responsive to certain wavelengths in the electromagnetic spectrum. This method requires the strategic placement of special light sources along the length of the lane surface as well as cameras which may be equipped with optical filters. At best, this method provides a stronger visual return from areas characterized by higher concentrations of additive, and does not provide a direct and quantitative measurement of oil at any point on the surface of a lane.
Another aspect of bowling lane surface condition is surface wear and degradation. Areas of excessive wear or cracking on the bowling lane surface can cause the conditioner to seep into the underlying wood. Pinhole “leaks” in protective laminates such as Guardian™ may also occur. Once the bowling lane is damaged, repairs are generally very expensive. Presently, there are no known methods for effectively monitoring the wear and degradation of a bowling lane.
Therefore, there is an unfulfilled need for a method and apparatus for monitoring the surface characteristics of a bowling lane surface. In particular, there is an unfulfilled need for such a method and apparatus that can quantify the amount of oil on the lane surface of a bowling alley which avoids the limitations of the prior art. In addition, there is an unfulfilled need for a method and apparatus for monitoring wear of a bowling lane.
SUMMARY OF THE INVENTION
The primary object of the present invention is to provide a method and apparatus for monitoring the condition of the lane surface of a bowling alley.
One advantage of the present invention is that it provides a rapid, direct, nondestructive, and accurate method and apparatus for quantifying the amount of oil on a bowling lane surface.
Another advantage of the present invention is that it provides a method and apparatus to obtain a direct measurement of oil without requiring the addition of optically active dyes or additives.
Still another advantage of the present invention is that it provides a method and apparatus that uses near-infrared spectrophotometry to quantify oil on a variety of surfaces associated with the bowling lane, including, but not limited to, synthetic, Guardian®, and variety of woods such as pine, maple and others.
Yet another advantage of the present invention is that it provides a method for diagnosing the general condition of a lane surface by sensing areas of excessive wear or cracking where conditioner seepage to an underlying wood surface can occur.
A further advantage of one embodiment of the present invention is that it provides a novel apparatus for oil pattern topical recognition which is mounted on a bowling lane surface conditioning machine that scans the lane surface as the machine moves down the lane.
Yet another advantage of another embodiment of the present invention is that it provides a novel apparatus for oil pattern topical recognition which is built into the lane.
Another advantage of yet another embodiment of the present invention is that it provides a novel hand-held apparatus for oil pattern topical recognition.
These and other objects, features, and advantages of the present invention are attained by a topical recognition apparatus for monitoring surface condition of a bowling lane surface. The apparatus has at least one lamp that provides light which impinges on the bowling lane surface, and at least one sensor positioned proximate to the bowling lane surface. The sensor is adapted to detect light provided by the lamp after the light is scattered and/or reflected, hereinafter referred to as scattered, off the bowling lane surface, where the scattered light is indicative of the surface condition of the bowling lane. More specifically, the device and method in accordance with the present invention is based on diffuse reflectance where light penetrates the lane surface a certain distance depending on material properties. Light that excites the vibrational and rotational modes of the sample molecules is absorbed. The balance of the light is scattered in all directions and carries information about the lane surface, such as the amount of oil that is on or under the surface, the thickness of the protective layers, etc.
In one embodiment of the present invention, the topical recognition apparatus is adapted to be moved lengthwise along the bowling lane during operation. In addition, in other embodiments, the lamp and/or the sensor is traversed widthwise across the bowling lane during operation.
In accordance with another embodiment of the present invention, the apparatus includes a spectrophotometer which determines characteristics of light scattered off the bowling lane surface, and a processor that analyzes characteristics of the light scattered off the bowling lane surface to thereby determine surface condition of the bowling lane. The apparatus may also include a display that displays the determined surface condition of the bowling lane.
In another embodiment of the present invention, the l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for monitoring surface condition of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for monitoring surface condition of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for monitoring surface condition of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3241828

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.