Masa based food products modified with an enzyme or a...

Food or edible material: processes – compositions – and products – Fermentation processes – Of farinaceous cereal or cereal material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S052000, C426S622000, C426S626000, C426S627000

Reexamination Certificate

active

06713099

ABSTRACT:

The present invention relates to a masa foodstuff. In particular, the present invention relates to a masa foodstuff comprising a modified protein wherein the unmodified protein is native to corn.
Corn provides the base ingredient for many staple foodstuffs. For example, corn may be processed to produce masa. Masa is the raw material for production of products such as corn tortilla, soft tortilla, corn chips, tortilla chips, taco shells, tamales. Masa is produced by a nixtamalisation process (also called alkaline cooking process). The nixtamalisation process involves cooking corn which still carries its outer shell (the pericarp). The cooking is performed in an alkaline solution such as lime (calcium hydroxide) and generally is for 12 to 24 hours. The cooked product is then steeped and washed to produce nixtamal. The nixtamal is then stone-ground to a soft moist dough called masa.
For the convenience of a domestic user or for some commercial users, it is desirable to provide the dry flour, or instant tortilla flour, that is called masa harina. Certain known processes for making masa harina include U.S. Pat. No. 826,983 disclosing steeping corn in the traditional manner, followed by drying the kernels and grinding into flour. U.S. Pat. No. 987,560 teach a process for partially boiling corn in calcium hydroxide solution and then grinding the wet kernels into paste. Water is pressed from the paste, followed by drying of press cake in a heated chamber, followed in turn by grinding into flour. A similar process is disclosed in U.S. Pat. No. 1,262,144 where the amount of lime in water is one-half percent, and in U.S. Pat. No. 1,334,366 calls for molding of dough into small thin cakes which are dried and then ground into flour. A similar process is described in U.S. Pat. No. 2,584,893.
U.S. Pat. No. 2,704,257, U.S. Pat. No. 2,854,339 and U.S. Pat. No. 2,930,699 disclose steeping of corn in calcium hydroxide solution at a temperature well below the gelatinisation point of starch of the corn, followed by drying of the whole steeped corn in a hot airstream while simultaneously comminuting it to obtain a flour which has been dried at temperatures less than 74° C. to a moisture content of not more than 10% by weight. The patents also describe apparatus for use in the drying and grinding steps.
U.S. Pat. No. 4,463,022 discloses a method for producing masa comprising the steps of placing the dry corn kernels in a vessel of boiling water and maintaining the water boiling for about five minutes. Heat is removed from the vessel, and the water and corn kernels are allowed to cool for about two hours under ambient conditions, bringing the temperature down to about 160° F. The corn kernels are then further cooled and washed by establishing a low volume flow of cool tap water through the vessel for about an additional two hours. Following this treatment, the hulls of the kernels are broken by passing the kernels through a set of crushing rolls spaced apart about one-eighth of an inch. Thereafter, the mass of hull-broken kernels is entirely, hull and all, forced through a plate perforated as a sieve, the perforations being very small in relation to the size of the corn kernels. This produces a uniform and highly desirable masa product. The moisture content of the mass of material is desirably adjusted to about 50% by weight, either before or after the material is forced through the perforations.
After production masa may then be treated in a number of ways. The masa may be introduced into, for example, a tortilla mold or a tortilla sheeter. This is the traditional end use for the masa. In an alternative, the masa can be dried and milled into a “shelf-stable” flour product. The masa may be reconstituted from the flour product at a later stage and then formed into a food product, such as tortilla.
With regard to industrial implementation, typically masa is sold in the form of the dried masa or is formed into a final food product, such as a tortilla, which is then packed. In both of these aspects, one of the advantages of providing the product in this form is that the end user is freed of the need to prepare the nixtamal and masa from the corn constituent. The requirements for labour, energy and processing time for the end use are reduced. Moreover, the product is simple to use.
Limitations in supply chains, particularly in developing regions which predominantly consume masa based products, require that corn products, such as tortillas, should typically retain their properties for at least 7 days after production.
Additives to corn tortillas and their effects on storage stability are discussed in the prior art. For example, J. C. Yau et al., “Effects of Food Additives on Storage Stability of Corn Tortillas”, Cereal Foods World, May 1994, Volume 39, No. 5, 397-402 discusses the incorporation of vegetable and animal proteins, gums, emulsifiers, modified starches and polyols into nixamalised corn flour during processing. The rheological properties (rollability and pliability), machinability, moisture content, and organoleptic properties were evaluated. The properties of the tortilla were measured when the tortilla was cold. Since starch retrogrades under storage, it may be concluded that Yau et al. are concerned with the effects of starch in the tortilla. Yau et al. discuss that at least some of the disclosed additives may provide a gel network which improves the retention of steam and the extent of puffing of corn tortillas on cooking. Moreover, it is discussed that proteins in corn masa do not form a gel network.
Further prior art disclosures of additives to corn masa products are provided by WO 96/39864, WO 95/14397, and U.S. Pat. No. 3,655,385. WO 96/39864 relates to the production of “fat free” corn chips made from corn flour or masa. The chips contain (i) up to 50% masa, (ii) starch, protein or fibre and (iii) a filler. Component (ii) and (iii) are incorporated to reduce the fat content of the corn chips.
WO 95/14397 relates to extruding a cereal grain dough containing a gum such as carboxymethylcellulose (CMC) and an optional protein to provide a product for subsequent frying. The fried food product may be a corn chip. This document teaches that gums are incorporated to allow correct hydration of the starch component of the corn flour. WO 95/14397 relates to the extrusion of a cereal grain—an alkaline treatment step (nixtamalisation) of the grain is explicitly avoided.
U.S. Pat. No. 3,655,385 relates to the prevention of staling in tortillas containing a hydrophilic edible gum. Prevention of staling is said to be achieved by the water retention of the hydrophilic gum.
Whilst the prior art offers various additives which may alter the storage ability or handling characteristics of a masa foodstuff, the prior art teaching offers no solution to the problem of providing tortillas or masa flour which have both good storage stability and/or handling properties.
The present invention addresses the problems of the prior art
According to a first aspect of the present invention there is provided a process for the preparation of a modified masa foodstuff, the process comprising the steps of (i) preparing a masa by nixtamalisation of corn (ii) contacting a reducing agent or an enzyme with (a) the masa, and/or (b) the corn prior to nixtamalisation; such that a protein native to the corn is modified.
By the term “nixtamalisation” it is meant heating corn which still carries its outer shell (the pericarp) in an alkaline solution. Preferably the alkaline solution is an aqueous solution of lime or calcium hydroxide.
The present invention may provide a masa foodstuff having improved handling properties. For example when the masa foodstuff is a tortilla the present invention improves rollability of the tortilla. By the term “improve reliability of the tortilla” it is meant achievement of a higher score than a control tortilla containing 0.5% CMC, when subjected to the Rollability Test described below. Yet further when the masa foodstuff is a tortilla the present invention improves foldability of the tortilla. By the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Masa based food products modified with an enzyme or a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Masa based food products modified with an enzyme or a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Masa based food products modified with an enzyme or a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3240752

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.