Connector and method of operation

Electrical connectors – Including or for use with coaxial cable – Having screw-threaded or screw-thread operated cable grip

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06676446

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to connectors used to couple cables to equipment ports, terminals, or the like. The invention is particularly useful in, although not limited to, universal connectors for coaxial cables of the type employed in the cable television industry.
BACKGROUND OF THE INVENTION
In using electronic devices such as televisions and video tape machines, it is desired to connect such devices either together or to other sources of electronic signals. Typically, a television may be hooked up to a cable service that enters the home through coaxial cables. Such cables are connected to the television by use of one or more connectors.
The conventional coaxial cable typically contains a centrally located electrical conductor surrounded by and spaced inwardly from an outer cylindrical braid conductor. The center and braid conductors are separated by a foil and an insulator core, with the braid being encased within a protective sheathing jacket. In some typical coaxial cables, a foil layer is not used such that the outer braid conductor surrounds the insulator core.
Conventional coaxial cable end connectors typically include an inner cylindrical post adapted to be inserted into a suitably prepared end of the cable between the foil and the outer braid conductor, an end portion of the latter having been exposed and folded back over the sheath jacket. The center conductor, the insulator core, and the foil thus form a central core portion of the cable received axially in the inner post, whereas the outer braid conductor and sheathing jacket comprise an outer portion of the cable surrounding the inner post.
The conventional coaxial cable end connector further includes an outer component designed to coact with an inner post in securely and sealingly clamping the outer portion of the cable therebetween. In “crimp type” end connectors, the outer component is a connector body fixed in relation to and designed to be deformed radially inwardly towards the inner post by a crimping tool. Typical examples of crimp type end connectors are described in U.S. Pat. No. 5,073,129 (Szegda); U.S. Pat. No. 5,083,943 (Tarrant); and U.S. Pat. No. 5,501,616 (Holliday), which are incorporated herein in their entirety.
In the so-called “radial compression type” end connectors, the outer component is a substantially non-deformable sleeve adapted to be shifted axially with respect to the inner post into a clamped position coacting with the inner post to clamp the prepared cable end therebetween. Typical examples of radial compression type connectors are described in U.S. Pat. No. 3,710,005 (French); U.S. Pat. No. 4,676,577 (Szegda); and U.S. Pat. No. 5,024,606 (Yeh Ming-Hwa), which are incorporated herein in their entirety.
These radial compression type end connectors suffer from a common disadvantage in that prior to being mounted on the cable ends, the outer sleeve components are detached and separated from the inner post and/or connector members. As such, the outer sleeve components are prone to being dropped or otherwise becoming misplaced or lost, particularly, as is often the case, when an installation is being made outdoors under less than ideal weather conditions.
In other attempts, connectors have been made by detachably interconnecting the connector body and outer sleeve component in a parallel side-by-side relationship. This is intended to facilitate pre-installation handling and storage. However, during installation, the outer sleeve component must still be detached from the connector body and threaded or inserted onto the cable as a separate element. Thus, mishandling or loss of the outer sleeve component remains a serious problem during the critical installation phase.
U.S. Pat. No. 5,295,864 (Birch et al), which is also incorporated herein in its entirety, discloses a radial compression type end connector with an integral outer sleeve component. Here, however, the outer sleeve component is shifted into its clamped position as a result of the connector being threaded onto an equipment port or the like. Before the clamped position is achieved, the end connector is only loosely assembled on and is thus prone to being dislodged from the cable end. This again creates problems for the installer.
Another shortcoming of known connectors is the need for an O-ring or similar sealing member to prevent moisture from penetrating the end connector between the connector body and the outer sleeve component.
Accordingly, there is a continued need for improved connectors in view of the problems associated with known connectors, and which may be utilized with a wide range of cable types and sizes. In addition, there is continued need for improved connectors that are relatively uncomplicated in structure and which are economical to fabricate.
SUMMARY OF THE INVENTION
The present invention is directed to a connector comprising body member including a post member defining an inner first cavity, and further including a connector body coupled to the post member and defining therebetween an outer first cavity, the post member having a first opening and a second opening each communicating with the inner first cavity, and the connector body having at least one opening communicating with said outer first cavity; and fastener member defining a second cavity and having a first opening and a second opening each communicating with the second cavity, at least a portion of the fastener member being movably disposed on the connector body in a first configuration, and capable of being disposed on the connector body in a second configuration in which the volume of the outer first cavity is decreased.
In a preferred embodiment, the fastener member, in a first configuration, is press fitted onto the connector body. Also the fastener member has an internal groove. The connector body has a detent disposed on its outer surface such that the detent is movably disposed in the internal groove in the first configuration. The detent, in the second configuration, is disposed on the inner surface of the fastener member.
The present invention is also directed to a coaxial cable connector comprising body member including a post member defining an inner first cavity, and further including a connector body coupled to said post member and defining therebetween an outer first cavity, the post member having a first opening and a second opening each communicating with said inner first cavity, and said connector body having at least one opening communicating with said outer first cavity; and fastener member defining a second cavity and having a first opening and a second opening each communicating with said second cavity, at least a portion of the fastener member being movably fastened on the connector body in a first configuration, and capable of being fastened on the connector body in a second configuration in which the volume of the outer first cavity is decreased.
Preferably the connector body and post member are each generally tubular.
The connector body is fastened to a portion of the post member adjacent the second opening of the post member, and the opening of the connector body is adjacent to the first opening of the post member. In the first configuration, the first opening of the fastener member is adjacent and communicates with the opening of the outer first cavity. The area of the first opening of the fastener member is greater than the area of the opening of the connector body.
The connector body has at least one or a plurality of serrations disposed on an inner surface thereof. The fastener member is generally tubular having at least a portion thereof with an inner diameter being less than the maximum outer diameter of at least a portion of the connector body adjacent the opening of the outer first cavity. The connector body has a flange disposed on a portion of an outer surface of the connector body. The flange is positioned to contact the fastener member fastened onto the connector body in the second configuration. The connector further comprises a nut member, coupled to at least one of the body member and th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Connector and method of operation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Connector and method of operation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Connector and method of operation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3237757

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.