X-ray or gamma ray systems or devices – Auxiliary data acquisition or recording – Patient or exposure data
Reexamination Certificate
2001-05-08
2004-03-30
Bruce, David V. (Department: 2882)
X-ray or gamma ray systems or devices
Auxiliary data acquisition or recording
Patient or exposure data
C378S020000, C378S094000, C378S210000, C600S425000
Reexamination Certificate
active
06714629
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a method for registering a patient data set obtained by an imaging process in camera navigation-supported surgical operations.
2. Description of Related Art
In recent times, surgical operations are being increasingly performed with the aid of so-called navigation systems, which enable the treating doctor to carry out the operation in an image-assisted manner. Such navigation systems are described, for example, in DE 196 39 615 A1, where a passive reflection referencing system is employed, whereas in U.S. Pat. No. 5,383,454 an instrument positioning system is known which uses active emitting, positional markers.
Such navigation systems are based on scan detection done prior to actual surgery, usually at a location other than the actual operating room and often later in time to patient markers already applied. Even when by such a patient scan, for example, a computer tomograph or MRI tomograph, markers are used which can later also be mapped by the navigation system during treatment, there is no way of preventing inaccuracy in in-situ registering in the operating room resulting from a shift in the markers or due to inaccurate methods of registering.
This is why attempts have been made to enhance the accuracy of registering the momentary position in the operating room by x-ray imaging in situ.
Thus, it has been proposed to perform operations with the aid of continual radiographic mapping, i.e. an x-ray unit with an x-ray source and an image amplifier continually furnishing a radiographic image, output on a display to visually assist the doctor during the operation. However, the disadvantage with this is the high exposure to continual x-ray radiation and, in addition, the only image-assistance which can be provided is relatively inaccurate and usually only two-dimensional.
Known from U.S. Pat. No. 4,791,934 is a CT-assisted, stereotactic surgical system in which several two-dimensional radiographic images are produced by means of a C-bow x-ray unit prior to the operative procedure, which are then superimposed with reconstructed images from the scan data set until the momentary position is established with relatively high accuracy, i.e. the tomographic data set in the navigation system is update-registered.
However, this method, too, still results in inaccuracies since the patient may very well be subjected to further movements during a surgical operation. In this respect, also to be kept into consideration is that some surgical operations necessitate massive manipulations already upon exposing the area to be treated, and that these manipulations may change the location of particular patient structures, and in particular their relative location, by several centimeters, despite all the fixing means employed.
Such shifts cannot be taken into account by the x-ray mapping in accordance with U.S. Pat. No. 4,791,934, which is carried out prior to treatment.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for registering a patient data set which overcomes the aforementioned disadvantages of prior art. In particular, it is the intention to create a possibility of implementing position correct navigation throughout the full duration of the operation.
This object is achieved by a method for registering a patient data set obtained by an imaging process in camera navigation-supported surgical operations comprising the following steps:
producing a patient data set by means of a tomographic scan or an imaging process for the body of the patient or a part thereof,
applying at least one marker array, identifiable and trackable in the navigation system, to at least one solid body structure, preferably a bone structure, after the patient has been brought into an operating room and during treatment, in particular after the area to be treated has been exposed,
producing one or more x-ray images of the area to be treated by means of an x-ray unit, the spatial position of said images in the navigation system being determined,
updating, by means of a computer-assisted assignment, the register of the patient data set with the positional data obtained from the x-ray image, and
detecting and re-registering movements or relative movements in the area to be treated by tracking said marker array(s) in the navigation system.
The main advantage of the present invention lies in the possibility of enabling extremely accurate navigation to be implemented, i.e. at any time during the operation. All movements or relative movements in the area to be treated can now be mapped by tracking the movement of one or more solid bone structures to thus permit backtrack computation of the change in position of surrounding areas, for example those of soft body parts, from being able to map the shift in these structures. The data of the patient data set thus continue to be available even when the position of the area to be treated, and in particular the relative position of individual structures in the area to be treated, is no longer the same as upon previous mapping by the imaging process (scan).
The possibility of updating the navigation at any time enables treatment to be performed with enhanced accuracy and thus less invasively, this also reducing the duration of such operations and ensuring continual sterility for the duration of the operation.
Any imaging technique is suitable as the method for producing the patient data set within the scope of the present invention, for example CT, MRI (magnetic nuclear resonance tomograph). PET, SPECT methods and ultrasound scanning. Being able to update the registering of the patient data set at any time in accordance with the invention in principle eliminates complicated registration procedures, for example, individual registering of markers on the patient's skin or on the bone surface by applying a pointer trackable in the navigation system. This thus more or less chronologically separates the production of the patient data set from the operation, i.e. patient scans can now be used which were taken weeks before the actual operation. In addition, any set of scan data can be used, since registering is no longer dependent on markers already applied to the patient at the time of production of the patient data set in the imaging process.
REFERENCES:
patent: 4501009 (1985-02-01), Abele
patent: 5368030 (1994-11-01), Zinreich et al.
patent: 5383454 (1995-01-01), Bucholz
patent: 5636255 (1997-06-01), Ellis
patent: 5800352 (1998-09-01), Ferre et al.
patent: 6198794 (2001-03-01), Peshkin et al.
patent: 6285902 (2001-09-01), Kienzle et al.
patent: 6381485 (2002-04-01), Hunter et al.
patent: 6584174 (2003-06-01), Schubert et al.
patent: 0 488 987 (1991-10-01), None
patent: 98/38908 (1998-09-01), None
Search Report for priority document EP 00109193.3 from European Patent Office.
Barber Therese
BrainLAB AG
Bruce David V.
Renner , Otto, Boisselle & Sklar, LLP
LandOfFree
Method for registering a patient data set obtained by an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for registering a patient data set obtained by an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for registering a patient data set obtained by an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3236883