Nicotine receptor agonists in stem cell and progenitor cell...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S326000, C514S315000, C514S317000, C514S336000, C514S422000, C514S408000

Reexamination Certificate

active

06720340

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to the field of mobilization and recruitment of stem cells and progenitor cells.
BACKGROUND OF THE INVENTION
Recruitment of stem cells and/or progenitor cells are important in a variety of applications. Vasculogenesis, which involves the growth of vessels derived from endothelial progenitor cells, is an example of such a process. Vasculogenesis, as well as angiogenesis, the process by which new blood vessels are formed from extant capillaries, and the factors that regulate these processes, are important in embryonic development, inflammation, and wound healing, and also contribute to pathologic conditions such as tumor growth, diabetic retinopathy, rheumatoid arthritis, and chronic inflammatory diseases (see, e.g., U.S. Pat. No. 5,318,957; Yancopoulos et al. (1998)
Cell
93:661-4; Folkman et al. (1996)
Cell
87;1153-5; and Hanahan et al. (1996)
Cell
86:353-64).
Both angiogenesis and vasculogenesis involve the proliferation of endothelial cells. Endothelial cells line the walls of blood vessels; capillaries are comprised almost entirely of endothelial cells. The angiogenic process involves not only increased endothelial cell proliferation, but also comprises a cascade of additional events, including protease secretion by endothelial cells, degradation of the basement membrane, migration through the surrounding matrix, proliferation, alignment, differentiation into tube-like structures, and synthesis of a new basement membrane. Vasculogenesis involves recruitment and differentiation of mesenchymal cells into angioblasts, which then differentiate into endothelial cells which then form de novo vessels (see, e.g., Folkman et al. (1996)
Cell
87:1153-5).
Several angiogenic and/or vasculogenic agents with different properties and mechanisms of action are well known in the art. For example, acidic and basic fibroblast growth factor (FGF), transforming growth factor alpha (TGF-&agr;) and beta (TGF-&bgr;), tumor necrosis factor (TNF), platelet-derived growth factor (PDGF), vascular endothelial cell growth factor (VEGF), and angiogenin are potent and well-characterized angiogenesis-promoting agents. In addition, both nitric oxide and prostaglandin (a prostacyclin agonist) have been shown to be mediators of various angiogenic growth factors, such as VEGF and bFGF. However, the therapeutic applicability of some of these compounds, especially as systemic agents, is limited by their potent pleiotropic effects on various cell types.
Angiogenesis and vasculogenesis have been the focus of intense interest since these processes can be exploited to therapeutic advantage. Stimulation of angiogenesis and/or vasculogenesis can aid in the healing of wounds, the vascularizing of skin grafts, and the enhancement of collateral circulation where there has been vascular occlusion or stenosis (e.g., to develop a “biobypass” around an obstruction due to coronary, carotid, or peripheral arterial occlusion disease). In addition, identification of agents that can stimulate recruitment of stem cells and/or progenitor cells could be useful in the treatment of other conditions associated with cellular injury and/or depletion of cells (e.g., acquired or genetic immune deficiencies). There is an intense interest in factors such agents that are well-tolerated by the subject, but that are of high potency in effecting stimulation of stem cell and/or progentior cell recruitment.
Related Art
Villablanca ((1998) “Nicotine stimulates DNA synthesis and proliferation in vascular endothelial cells in vitro,”
J. Appl. Physiol
. 84:2089-98) studied the effects of nicotine on endothelial DNA synthesis, DNA repair, proliferation, and cytoxicity using cultures of bovine pulmonary artery endothelial cells in vitro.
The reference Carty et al. ((1996) “Nicotine and cotinine stimulate secretion of basic fibroblast growth factor and affect expression of matrix metalloproteinases in cultured human smooth muscle cells,”
J Vasc Surg
24:927-35) demonstrate that nicotine stimulates vascular smooth muscle cells to produce fibroblast growth factor, and also upregulates the expression of several matrix metalloproteinases. The investigators propose that these data demonstrate mechanisms by which smoking may cause atherosclerosis and aneurysms.
The reference by Belluardo et al. ((1998) Acute intermittent nicotine treatment produces regional increases of basic fibroblast growth factor messenger RNA and protein in the tel-and diencephalon of the rat,”
Neuroscience
83:723-40) reported that nicotine stimulates the expression of fibroblast growth factor-2 in rat brain, which the investigators propose may explain the neuroprotective effect of nicotine in the rat brain.
Moffett et al. ((“Increased tyrosine phosphorylation and novel cis-actin element mediate activation of the fibroblast growth factor-2 (FGF-2) gene by nicotinic acetylcholine receptor. New mechanism for trans-synaptic regulation of cellular development and plasticity,”
Mol Brain Res
55:293-305) report that nicotine stimulates the expression of fibroblast growth factor-2 in neural crest-derived adrenal pheochromatocytes utilizing a unique transcriptional pathway that requires tyrosine phosphorylation. The authors propose that these findings suggest that activation of nicotine receptors may be involved in neural development.
Cucina et al. ((1999) “Nicotine regulates basic fibroblastic growth factor and transforming growth factor &bgr;
1
production in endothelial cells,”
Biochem Biophys Res Commun
257:302-12) report that nicotine increases the release of bFGF, decreases the release of TGF 1 from endothelial cells, and increases endothelial mitogenesis. The authors conclude that these effects may have a key role in the development and progression of atherosclerosis.
Volm et al. (1999) “Angiogenesis and cigarette smoking in squamous cell lung carcinomas: an immunohistochemical study of 28 cases.”
Anticancer Res
19(1A):333-6 reports that angiogenesis in lung tumors is linked to a patient's smoking habits.
Macklin et al. (1998) “Human vascular endothelial cells express functional nicotinic acetylcholine receptors,”
J. Pharmacol. Exper. Therap
. 287:435-9 reports that endothelial cells express both functional nicotinic (neuronal type) and muscarinic acetylcholine receptors.
U.S. Pat. Nos. 5,318,957; 5,866,561; and 5,869,037 describe use of various compounds (haptoglobin and estrogen) and methods (adenoviral-mediated gene therapy of adipocytes) to effect angiogenesis.
For recent reviews in the field of angiogenesis and vasculogenesis, see, e.g., Yancopoulos et al. (1998)
Cell
93:661-4; Folkman et al. (1996) Cell 87;1153-5; and Hanahan et al. (1996)
Cell
86:353-64.
SUMMARY OF THE INVENTION
The present invention features methods for recruitment of bone marrow-derived stem cells (e.g., endothelial cell precursors, hematopoietic stem cells) by administration of nicotine or other nicotine receptor agonist. The methods of the invention can be used in, for example, treatment of conditions amenable to treatment by recruitment of bone marrow-derived stem cells (e.g., neutropenia).
One object of the present invention to provide a method of recruiting endothelial progenitor cells to enhance angiogenesis.
Another object of the present invention is to provide a method of treating and preventing diseases and ailments involving tissue damage (e.g., to facilitate cellular repair), such as in myocardial and cerebral infarctions, mesenteric or limb ischemia, wounds, and vascular occlusion or stenosis.
Another object of this invention is to provide a method of accelerating wound healing, vascularization and incorporation of skin grafts, musculocutaneous flaps or other surgically transplanted tissues; or to enhance the healing of a surgically created anastomosis.
Another object of the invention is provide a method of treating conditions or diseases associated with depletion of cells that develop from bone marrow-derived stem cells (e.g., immune cells, e.g., neutrophils, eosinophils, T cells, B cells, macrophages, natural killer cells

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nicotine receptor agonists in stem cell and progenitor cell... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nicotine receptor agonists in stem cell and progenitor cell..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nicotine receptor agonists in stem cell and progenitor cell... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3235185

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.