Magnetic recording medium with antiparallel coupled...

Stock material or miscellaneous articles – All metal or with adjacent metals – Having magnetic properties – or preformed fiber orientation...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S637000, C428S667000, C428S668000, C428S669000, C428S672000, C428S673000, C428S065100, C428S215000, C428S690000

Reexamination Certificate

active

06723450

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to magnetic recording media, and more particularly to thermally stable high density media.
BACKGROUND OF THE INVENTION
Conventional media for horizontal or in-plane magnetic recording, such as the rigid magnetic recording disks in hard disk drives, typically use a granular ferromagnetic material, such as a sputter-deposited cobalt-platinum (CoPt) alloy, as the magnetic layer for the recording medium. Each magnetized domain in the magnetic layer is comprised of many small magnetic grains. The transitions between magnetized domains represent the “bits” of the recorded data. IBM's U.S. Pat. Nos. 4,789,598 and 5,523,173 describe this type of conventional rigid disk.
As the storage density of magnetic recording disks has increased, the product of the remanent magnetization Mr (the magnetic moment per unit volume of ferromagnetic material) and the magnetic layer thickness t has decreased. Similarly, the coercive field or coercivity (H
c
) of the magnetic layer has increased. This has led to a decrease in the ratio Mrt/H
c
. To achieve the reduction in Mrt, the thickness t of the magnetic layer can be reduced, but only to a limit because the layer will exhibit increasing magnetic decay, which has been attributed to thermal activation of small magnetic grains (the superparamagnetic effect). The thermal stability of a magnetic grain is to a large extent determined by K
u
V, where K
u
is the magnetic anisotropy constant of the layer and V is the volume of the magnetic grain. As the layer thickness is decreased, V decreases. If the layer thickness is too thin, the stored magnetic information will no longer be stable at normal disk drive operating conditions. One approach to the solution of this problem is to move to a higher anisotropy material (higher K
u
). However, the increase in K
u
is limited by the point where the coercivity H
c
, which is approximately equal to K
u
/Mr, becomes too great to be written by a conventional recording head. A similar approach is to reduce the Mr of the magnetic layer for a fixed layer thickness, but this is also limited by the coercivity that can be written. Another solution is to increase the intergranular exchange, so that the effective magnetic volume V of the magnetic grains is increased. However, this approach has been shown to be deleterious to the intrinsic signal-to-noise ratio (SNR) of the magnetic layer.
Magnetic recording media with high intrinsic SNR (low intrinsic media noise) is desirable because it is well known in metal alloy media, such as CoPt alloys, that the intrinsic media noise increases with increasing linear recording density. Media noise arises from irregularities in the magnetic transitions and results in random shifts of the readback signal peaks. These random shifts are referred to as “peak jitter” or “time jitter”. Thus higher media noise leads to higher bit error rates. It is therefore desirable to develop a thin film metal alloy magnetic media that generates noise below a maximum acceptable level so that data can be recorded at maximum linear density. It is known that substantially improved SNR can be achieved by replacing a single magnetic layer with a laminated magnetic layer of two (or more) separate magnetic layers that are spaced apart by an nonmagnetic spacer layer. This discovery was made by S. E. Lambert, et al., “Reduction of Media Noise in Thin Film Metal Media by Lamination”,
IEEE Transactions on Magnetics,
Vol. 26, No. 5, September 1990, pp. 2706-2709, and subsequently patented in IBM's U.S. Pat. No. 5,051,288. The reduction in media noise by lamination is believed due to a decoupling of the magnetic interaction or exchange coupling between the magnetic layers in the laminate. The use of lamination for noise reduction has been extensively studied to find the favorable spacer layer materials, including Cr, CrV, Mo and Ru, and spacer layer thicknesses, from 5 to 400 A, that result in the best decoupling of the magnetic layers, and thus the lowest media noise. This work has been reported in papers by E. S. Murdock, et al., “Noise Properties of Multilayered Co-Alloy Magnetic Recording Media”,
IEEE Transactions on Magnetics,
Vol. 26, No. 5, September 1990, pp. 2700-2705; A. Murayama, et al., “Interlayer Exchange Coupling in Co/Cr/Co Double-Layered Recording Films Studied by Spin-Wave Brillouin Scattering”,
IEEE Transactions on Magnetics,
Vol. 27, No. 6, November 1991, pp. 5064-5066; and S. E. Lambert, et al., “Laminated Media Noise for High Density Recording”,
IEEE Transactions on Magnetics,
Vol. 29, No. 1, January 1993, pp. 223-229. U.S. Pat. No. 5,462,796 and the related paper by E. Teng et al., “Flash Chromium Interlayer for High Performance Disks with Superior Noise and Coercivity Squareness”,
IEEE Transactions on Magnetics,
Vol. 29, No. 6, November 1993, pp. 3679-3681, describe a laminated low-noise disk that uses a discontinuous Cr film that is thick enough to reduce the exchange coupling between the two magnetic layers in the laminate but is so thin that the two magnetic layers are not physically separated. However, in conventional laminated media, because the spaced-apart magnetic layers have their magnetic moments oriented parallel in the two remanent magnetic states (zero applied magnetic field), the Mrt of the laminated media is the sum of the Mrt of each of the individual magnetic layers and thus there is no reduction in Mrt and no improvement in thermal stability.
IBM's U.S. Pat. No. 6,280,813 describes antiferromagnetically coupled (AFC) media, wherein the magnetic recording layer is at least two ferromagnetic films exchange coupled together antiferromagnetically across a nonferromagnetic spacer film (also called the antiferromagnetic coupling film). The antiferromagnetic exchange coupling, which is believed to originate from the Ruderman-Kittel-Kasuya-Yoshida (RKKY) coupling typically found in Co/Ru/Co multilayers, produces an exchange field (H
af
) that is greater than the coercive field of the lower ferromagnetic film. As a result the two ferromagnetic films have their moments oriented antiparallel in the two remanent magnetic states (zero applied magnetic field). Because the magnetic moments are oriented antiparallel, the net remanent magnetization-thickness product (Mrt) of the recording layer is the difference in the Mrt values of the two ferromagnetic films. This reduction in Mrt is accomplished without a reduction in the thermal stability of the recording medium because the volumes of the grains in the top ferromagnetic film remain unchanged since its thickness is unchanged. The exchange coupling oscillates from antiferromagnetic to ferromagnetic with decreasing coupling strength as the thickness of the spacer film increases, as described by Parkin et al. in “Oscillations in Exchange Coupling and Magnetoresistance in Metallic Superlattice Structures: Co/Ru, Co/Cr and Fe/Cr”,
Phys. Rev. Lett.,
Vol. 64, p. 2034 (1990).
Antiferromagnetic exchange coupling of ferromagnetic films was previously described with respect to spin-valve type giant magnetoresistance (GMR) recording heads and magnetic tunnel junction (MTJ) devices as a way to design continuous magnetized antiferromagnetically exchange coupled films whose magnetic moments are rigidly coupled together antiparallel during operation. These types of structures are described, for example, in IBM's U.S. Pat. Nos. 5,408,377 and 5,465,185. IBM's U.S. Pat. No. 6,166,948 describes an MTJ device with a continuous magnetized antiparallel-coupled ferromagnetic structure wherein antiferromagnetic exchange coupling is deliberately avoided. Instead, the two ferromagnetic films making up the structure are magnetostatically coupled at their ends by the dipole fields that emanate from the ends of the films.
In AFC media the antiferromagnetic coupling film must be selected from a list of known materials and must be of a special thickness to give rise to the exchange coupling between the two ferromagnetic films, which limits the material selection and manufacturing options

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Magnetic recording medium with antiparallel coupled... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Magnetic recording medium with antiparallel coupled..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic recording medium with antiparallel coupled... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3234595

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.