Stacked intermedular rods for spinal fixation

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S060000

Reexamination Certificate

active

06706044

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
Surgical correction of spinal deformity is one of the fundamental achievements of twentieth century Orthopaedics. A number of mechanical techniques have been invented. These include various braces, such as the Milwaukee Brace of Blount and a number of surgical procedures ranging from simple bone grafting (Albee, Hibbs, Moe) to the use of posterior metal hardware systems such as Harrington's rods, and pedicle fixation systems. More recently, experts in the field have developed anterior correction and stabilization systems such as Zielke, Dwyer, Zdeblick and Kanada.
The entire field of spinal deformity is complicated, including the classification of disease and the treatment of the conditions. Numerous classification strategies based on pathology have been suggested, such as infantile, adolescent idiopathic, post-traumatic, neoplastic and neuromuscular.
A classification scheme based on the architectural abnormalities is simpler and more useful to those involved in developing hardware fixation systems. This scheme subdivides the deformities into a small number of sub-types based on the plane of deformity, including:
1. Sagittal plane deformities,
2. Coronal plane deformities, and
3. Rotational deformities.
It must be appreciated that an individual case may possess deformity in more than one plane.
Curved portions of the spine are sometimes differentiated into two types depending on their flexibility and ease of correction with simple changes in posture. These types are:
1) Structural curves, that tend to be stiff—they don't change much with changes in posture, and
2) Compensatory curves, that tend to bend back toward normal by changes in posture.
Structural curves tend to be shorter in length than compensatory curves. Oftentimes, surgeons find that if they can correct the structural curves surgically, the compensatory curves will self-resolve.
For purposes of description, the spine may be divided into two portions; the anterior portion, consisting of the vertebral bodies and the spinal discs; and the posterior portion, consisting of all bony and ligamentous tissue that is posterior to the posterior aspect of the vertebral bodies.
Many, if not most forms of spinal deformity result from pathology in the anterior portion of the spine. Posterior fixation devices are less effective than anterior devices in the correction of anterior pathology. For that reason, many popular fixation devices are designed for anterior placement. Previous attempts to design anterior devices have been troubled with several problems, limitations, and disadvantages. These include:
1. The bulky, exposed metal of anterior devices can irritate and erode delicate visceral tissues such as the aorta, vena cava, the lung and other tissues. In fact, several deaths have resulted from bulky anterior devices used on the anterior surface of the spine. Even newer anterior devices suffer from this limitation; e.g. sturdier, plate-like devices, such as the Yuan device and the Zdeblick Z-Plate should not be applied directly to the anterior aspect of the spine because of the likelihood of aortic erosion (Jendrisak MD. Spontaneous abdominal aortic rupture from erosion by a lumbar spine fixation device: A case report. Surgery 1986;99:631-3).
2. Smaller, thinner anterior devices, such as the Dwyer and Zielke systems are not capable of correcting and holding rotational deformities.
3. Large, stiff rod systems such as the Kostuik-Harrington system or the Kanada device and similar systems are difficult to custom fit to the desired degree of bending because the large stiff rods must be permanently deformed before final placement into the body. It is very difficult, if not impossible, to deform the rod to the desired bend without permanently damaging the metal structure of the device.
While the present invention is useful for posterior application, it is expected that its use would be most commonly performed from the anterior direction. The current invention teaches a novel device that allows the surgeon to correct and stabilize many types of deformities via the anterior column of the spine. The device solves most of the problems listed above. If the stacked rods of this invention were substituted for the single non-round rod of the Spineology K-Centrum® System (U.S. Pat. No. 5,591,235) the resulting system would have the advantages of containment within the external margin of the spinal bones—and therefore the safety afforded by the lack of protrusions into delicate visceral structures—and the advantages of conformability and ease of use to be described in the following device description.
For many of the reasons outlined below, it is expected that the device will be more versatile, more stable and safer to use than other forms of correction and stabilization.
Rather than a large rigid single rod, e.g. the Harrington-Kostuik device, or double large rigid rods intentionally separated by a plate, e.g., the Kanada device, or a large rigid plate, e.g., the Z-Plate, this invention utilizes several small diameter, flexible rods. When these rods are stacked closely together and compressed against each other by a tightening means, such as a screw or clamp, the group of rods develops the rigidity of the single larger rods or plates, and therefore can support spinal loads far greater than they would otherwise be capable of. The advantage offered by this invention is the ability to place the flexible rods into position without permanently deforming their structure, i.e. by not deforming them beyond the yield point defined by Young's modulus for the material, as would be necessary in more bulky rigid devices.
This allows the surgeon to place the rods with finger forces only, without damaging the structure of the rod. In a later stage of the operation, the surgeon is able to manipulate the stacked rods into the appropriate position and tighten a tightening device associated with the rods, thereby creating a rigid construct, but without the necessity of removing the rods from the construct, bending them on the back table, and then replacing the rod into position in the construct. This capability should reduce operative time, reduce blood loss, and avoid damage and permanent deformity of the rods—and consequent damage to their metallic structure. For these and other reasons, the present device is theoretically easier, faster, safer and more secure than competitive devices.
The art described in this section is not intended to constitute an admission that any patent, publication or other information referred to herein is “prior art” with respect to this invention, unless specifically designated as such. In addition, this section should not be construed to mean that a search has been made or that no other pertinent information as defined in 37 C.F.R. §1.56(a) exists.
BRIEF SUMMARY OF THE INVENTION
The invented device comprises four basic components: a bone anchor component, a plurality of rods, a means for attaching the anchors to the rods, and a means for compression or clamping the rods together.
The bone anchors ensure that the present device is properly secured to the spinal bones. The bone anchors may be slotted screws, staples, bolts, hooks or clamps. In a preferred embodiment, the bone anchors may be large hollow slotted vertebral body anchors such as the K-Centrum® bone anchors.
The rods comprise at least two moderately flexible rods which run essentially parallel together in a stacked fashion. The rods may be comprised of a variety of materials including: steel, titanium, Nitinol, a composite material such as carbon fibers mixed with a resin or cement, or any other sufficiently strong biocompatible material. In order to fit the human spine, they may be about 0.5 to 3 mm in diameter and their lengths may be sized to fit the length of the curve to be corrected.
The means of attaching the anchors to the stacked rods may be embodied in a variety of features which may be inherent in the anchor and/or rod construction. For e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Stacked intermedular rods for spinal fixation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Stacked intermedular rods for spinal fixation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stacked intermedular rods for spinal fixation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3229055

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.