Image analysis – Applications
Reexamination Certificate
2001-11-02
2004-03-16
Johns, Andrew W. (Department: 2621)
Image analysis
Applications
C380S252000
Reexamination Certificate
active
06707930
ABSTRACT:
The invention relates to a method and arrangement for embedding a watermark in an information signal, an information signal with an embedded watermark, and a storage medium having stored thereon an information signal with an embedded watermark.
The ongoing digitalization of multimedia data has had a dual effect. While on the one hand it has enabled faster and more efficient storage, transfer and processing of signals, on the other hand duplication and manipulation of such signals has also become very easy and undetectable. Security concerns over copyright violation of multimedia data have also increased with the growth of computer networks like the Internet, which enable fast and error free movement of any unauthorized duplicate and possibly manipulated copy of multimedia information. Thus, there is a need to maintain some sort of copyright information in such open environment. These copyright information would need to be both easy to detect and yet hard to remove. The only solution appears to be to cement into the image, video or audio data a secondary signal that is not the perceptible and is bonded so well to the original data that it is inseparable and survives any kind of multimedia signal processing. Such secondary information is usually called a watermark.
Watermarking an image is essentially a process of altering the pixel values of an image in a manner that ensures that a viewer of the image does not notice any perceptual change between the original and the watermark image. Altering a large number of pixel values in an arbitrary manner will result in noticeable artifacts. Every pixel value of an image can be altered only to a certain limit without making perceptible differences to the image quality.
From WO 99/45705 a method for embedding auxiliary data in a signal is known. The data is encoded into the relative position or phase of one or more basic watermark pattern. To avoid that the watermark detection process needs to search the watermark over a large space, the watermark is generated by repeating smaller units called “tiles” over the extent of the image. Furthermore a local depth map or visibility mask &lgr;(P) also referred to as local weight is computed. At each pixel position, &lgr;(P) provides a measure for the visibility of additive noise.
In other words, &lgr;(P) measures the local sensitivity of the image to degradation by additive noise, and is in practical situations determined by the magnitude of the response of a Langrangian high-pass filter L=[−1−1−1; −1 8−1, −1−1−1]. The value of the tiled watermark at each position is multiplied by the visibility value of &lgr;(P) at that position. Accordingly, the equation for an information signal with an embedded watermark is as follows:
Q
=P+&lgr;(
P
)
W
(1)
where P is the information signal into which a watermark W is to be embedded resulting in an information signal Q with an embedded watermark W.
The next step would be to detect whether or not a particular watermark pattern W is included in the signal in question. The signal in question Q and the watermark pattern W are subject to correlation wherein the signal in question Q is possibly pre-filtered to increase the detection robustness. The watermark pattern W is detected to be present if a correlation value is larger than a given threshold.
In many situations this is a method useful for adapting the energy of the watermark to the local properties of the image. For reasons of complexity and simplicity, the pattern W was chosen as a spectrally white pattern, wherein each frequency component having more or less the same power. In particular this method performs well in image regions which have no strong directional preference. However, in image regions which do have a strongly directional preference, for example along edges, this method for adapting the watermark strength creates artifacts in the cover image.
In “Content Based Watermarking of Images”, Kankanhalli et al. 6th ACM International Multimedia Conference, 1998, Bristol, UK (also published on the webpage: http://info.acm.org/sigmm/MM98/electronic_proceedings/kankanhalli/index.html) a new method of analyzing the noise sensitivity of every pixel based on the local region image content, such as texture, edge and luminance information is proposed. This results in a just noticeable distortion mask for the image to be watermarked. Then each bit of the watermark is spread spatially and shaped by a pseudo-noise sequence such that its amplitude is kept below the noise sensitivity of the pixel into which it is embedded.
Studies on the human perception of images have resulted in a so called Human Visual System (HVS). Details thereon are published in “Signal compression based on models of human perception”, by Johnston et al. in the Proceedings of the IEEE, 81 (10), page 1385 to 1422, October 1993.
It is known that the Human Visual System (HVS) is more sensitive to orthogonal noise than to parallel noise, explaining the observed watermark artifacts in regions which have dominant directionality, in particular in case of edges.
According to the HVS the visibility of distortions in a region of the image depend on
Edge information of an image, which is a very important factor for the perception of an image. It has the least noise sensitivity and it is therefore essential to maintain edge integrity in order to preserve the image quality;
Smooth areas influence our perception together with the edge information;
In textures the distortion visibility is low, i.e. a strongly texture region has a very high noise-sensitivity level;
Brightness sensitivity: When the mean value of the square of the noise is the same as that of the background, the noise tends to be most visible against a mid-gray background, i.e. mid-gray regions are more sensitive to noise as compared to other regions.
The watermark is embedded into the image by scaling or weighting the watermark according to the noise sensitivity of the particular image region. This ensures that the watermark distorts the regions least that are sensitive to changes and exploits perceptional spatial redundancies in the areas of high detail and structure.
The watermark embedding methods known from the prior art have in common that they do not fully exploit spatial perceptional redundancies to incorporate watermark energy into the information signal.
It is an object of the invention to provide a method for embedding a watermark in an information signal, wherein said watermark is more robust as compared to known watermarks, while the watermark detection is kept unchanged. Further a corresponding arrangement for embedding a watermark in an information signal, an information signal with an embedded watermark, and a storage medium having stored thereon an information signal with an embedded watermark shall be provided.
This object is achieved according to the invention by a method as set forth in claim
1
, by an arrangement as set forth in claim
6
, by an information signal as set forth by claim
7
and by a storage medium as set forth in claim
8
.
The invention is mainly based on the idea, that a watermark is embedded in an information signal by deriving watermark sub-patterns from a watermark pattern. Each of these derived sub-patterns have an energy spectrum concentration with an dominant orientation. The local weight factors for said sub-patterns are determined based on the local energy spectrum of the information signal in said dominant orientation and the watermark sub-patterns are locally weighted using the determined local weight factors. Finally, the locally weighted watermark sub-patterns are added to the information signal. Thus orientation redundancies of the information signal can be exploited to incorporate more watermark energy into the information signal without a perceptible distortion.
In an aspect of the invention the local weight factors for said sub-patterns are determined based on the local spatial energy spectrum of the information signal in said dominant orientation. T
Haitsma Jaap Andre
Kalker Antonius Adrianus Cornelis Maria
LandOfFree
Method and arrangement for embedding a watermark in an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and arrangement for embedding a watermark in an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and arrangement for embedding a watermark in an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3227330