Watermark embedder and reader

Image analysis – Applications

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06718047

ABSTRACT:

TECHNICAL FIELD
The invention relates to digital watermarking of media content, such as images, audio and video.
BACKGROUND AND SUMMARY
Digital watermarking is a process for modifying media content to embed a machine-readable code into the data content. The data may be modified such that the embedded code is imperceptible or nearly imperceptible to the user, yet may be detected through an automated detection process. Most commonly, digital watermarking is applied to media such as images, audio signals, and video signals. However, it may also be applied to other types of data, including documents (e.g., through line, word or character shifting), software, multi-dimensional graphics models, and surface textures of objects.
Digital watermarking systems have two primary components: an embedding component that embeds the watermark in the media content, and a reading component that detects and reads the embedded watermark. The embedding component embeds a watermark pattern by altering data samples of the media content. The reading component analyzes content to detect whether a watermark pattern is present. In applications where the watermark encodes information, the reader extracts this information from the detected watermark.
One challenge to the developers of watermark embedding and reading systems is to ensure that the watermark is detectable even if the watermarked media content is transformed in some fashion. The watermark may be corrupted intentionally, so as to bypass its copy protection or anti-counterfeiting functions, or unintentionally through various transformations that result from routine manipulation of the content. In the case of watermarked images, such manipulation of the image may distort the watermark pattern embedded in the image.
The invention provides watermark structures, and related embedders, detectors, and readers for processing the watermark structures. In addition, it provides a variety of methods and applications associated with the watermark structures, embedders, detectors and readers. While adapted for images, the watermark system applies to other electronic and physical media. For example, it can be applied to electronic objects, including image, audio and video signals. It can be applied to mark blank paper, film and other substrates, and it can be applied by texturing object surfaces for a variety of applications, such as identification, authentication, etc. The detector and reader can operate on a signal captured from a physical object, even if that captured signal is distorted.
The watermark structure can have multiple components, each having different attributes. To name a few, these attributes include function, signal intensity, transform domain of watermark definition (e.g., temporal, spatial, frequency, etc.), location or orientation in host signal, redundancy, level of security (e.g., encrypted or scrambled). When describing a watermark signal in the context of this document, intensity refers to an embedding level while strength describes reading level (though the terms are sometimes used interchangeably). The components of the watermark structure may perform the same or different functions. For example, one component may carry a message, while another component may serve to identify the location or orientation of the watermark in a combined signal. Moreover, different messages may be encoded in different temporal or spatial portions of the host signal, such as different locations in an image or different time frames of audio or video.
Watermark components may have different signal intensities. For example, one component may carry a longer message, yet have smaller signal intensity than another component, or vice-versa. The embedder may adjust the signal intensity by encoding one component more redundantly than others, or by applying a different gain to the components. Additionally, watermark components may be defined in different transform domains. One may be defined in a frequency domain, while another may be defined in a spatial or temporal domain.
The watermark components may be located in different spatial or temporal locations in the host signal. In images, for example, different components may be located in different parts of the image. Each component may carry a different message or perform a different function. In audio or video, different components may be located in different time frames of the signal.
The watermark components may be defined, embedded and extracted in different domains. Examples of domains include spatial, temporal and frequency domains. A watermark may be defined in a domain by specifying how it alters the host signal in that domain to effect the encoding of the watermark component. A frequency domain component alters the signal in the frequency domain, while a spatial domain component alters the signal in the spatial domain. Of course, such alterations may have an impact that extends across many transform domains.
While described here as watermark components, one can also construe the components to be different watermarks. This enables the watermark technology described throughout this document to be used in applications using two or more watermarks. For example, some copy protection applications of the watermark structure may use two or more watermarks, each performing similar or different function. One mark may be more fragile than another, and thus, disappear when the combined signal is corrupted or transformed in some fashion. The presence or lack of a watermark or watermark component conveys information to the detector to initiate or prohibit some action, such as playback, copying or recording of the marked signal.
A watermark system may include an embedder, detector, and reader. The watermark embedder encodes a watermark signal in a host signal to create a combined signal. The detector looks for the watermark signal in a potentially corrupted version of the combined signal, and computes its orientation. Finally, a reader extracts a message in the watermark signal from the combined signal using the orientation to approximate the original state of the combined signal.
There are a variety of alternative embodiments of the embedder and detector. One embodiment of the embedder performs error correction coding of a binary message, and then combines the binary message with a carrier signal to create a component of a watermark signal. It then combines the watermark signal with a host signal. To facilitate detection, it may also add a detection component to form a composite watermark signal having a message and detection component. The message component includes known or signature bits to facilitate detection, and thus, serves a dual function of identifying the mark and conveying a message. The detection component is designed to identify the orientation of the watermark in the combined signal, but may carry an information signal as well. For example, the signal values at selected locations in the detection component can be altered to encode a message.
One embodiment of the detector estimates an initial orientation of a watermark signal in the multidimensional signal, and refines the initial orientation to compute a refined orientation. As part of the process of refining the orientation, this detector computes at least one orientation parameter that increases correlation between the watermark signal and the multidimensional signal when the watermark or multidimensional signal is adjusted with the refined orientation.
Another detector embodiment computes orientation parameter candidates of a watermark signal in different portions of the target signal, and compares the similarity of orientation parameter candidates from the different portions. Based on this comparison, it determines which candidates are more likely to correspond to a valid watermark signal.
Yet another detector embodiment estimates orientation of the watermark in a target signal suspected of having a watermark. The detector then uses the orientation to extract a measure of the watermark in the target. It uses the measure of the watermark to assess m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Watermark embedder and reader does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Watermark embedder and reader, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Watermark embedder and reader will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3221375

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.