Electrical connector assembly for coaxial cables

Electrical connectors – With contact preventer or retractable cover part – Movably mounted

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06736653

ABSTRACT:

BACKGROUND OF THE INVENTION
Certain embodiments of the present invention relate to connector assemblies that electrically interconnect coaxial cables. More particularly, certain embodiments of the present invention relate to connector assemblies that preload dielectrics within matable housings such that the dielectrics are in full mating contact with each other when connected.
In the past, connectors have been proposed for interconnecting coaxial cables. Generally, coaxial cables have a circular geometry formed with a central conductor (of one or more conductive wires) surrounded by a cable dielectric material. The dielectric material is surrounded by a cable braid (of one or more conductive wires) that serves as a ground, and the cable braid is surrounded by a cable jacket. In most coaxial cable applications, it is preferable to match the impedance between source and destination electrical components located at opposite ends of the coaxial cable. Consequently, when sections of coaxial cable are interconnected by connector assemblies, it is preferable that the impedance remain matched through the interconnection.
Today, coaxial cables are widely used. Recently, demand has arisen for radio frequency (RF) coaxial cables in applications such as the automotive industry. The demand for RF coaxial cables in the automotive industry is due in part to the increased electrical content within automobiles, such as AM/FM radios, cellular phones, GPS, satellite radios, Blue Tooth™ compatibility systems and the like. The wide applicability of coaxial cables demands that connected coaxial cables maintain the impedance at the interconnection.
Conventional coaxial connector assemblies include matable plug and receptacle housings carrying dielectric subassemblies. The dielectric subassemblies include dielectrics, metal outer shields, and center contacts. The dielectric subassemblies receive and retain coaxial cable ends, and the outer shields have pins that pierce the jackets to electrically contact the cable braids while the center contacts engage the central conductors. The plug and receptacle housings include interior latches that catch and hold the dielectric subassemblies, and thus the coaxial cable ends, therein. When the plug and receptacle housings are mated, the dielectric subassemblies are engaged such that the outer shields are interconnected and the center contacts are interconnected with the dielectrics interconnected therebetween to form a dielectric between signals sent through the outer shields and signals sent through the center contacts.
The conventional coaxial connector assembly suffers from certain drawbacks. The interior latches allow the dielectric subassemblies to axially float within the plug and receptacle housings. When the plug and receptacle housings are mated, the dielectric subassemblies have a certain longitudinal clearance in order that the mated dielectric subassemblies separate slightly from each other without being disconnected or interrupting the electrical connection. When such a separation occurs, the dielectrics are disengaged to a point that air gaps develop between the connected center contacts and the connected outer shields. Because the air gaps have a different dielectric constant than the dielectrics and cable dielectric material, the impedance experienced by the electric signals changes at the point where the dielectric subassemblies interconnect. The change in impedance causes the electric signals to reflect at the point of interconnection, so more power is required to electrically connect the coaxial cables.
Thus, an improved coaxial connector assembly is needed that avoids the above noted problems and other disadvantages experienced heretofore.
BRIEF SUMMARY OF THE INVENTION
Certain embodiments of the present invention include an electrical connector assembly including first and second housings having mating ends configured to be joined with one another and configured to retain contacts that are joined when the first and second housings are mated. The first and second housings each have a reception end receiving a dielectric subassembly configured to carry an electrical cable connected to a contact. The dielectric subassemblies are aligned along a common longitudinal axis and mate with one another when the first and second housings are mated. Each of the first and second housings have a hatch proximate a corresponding reception end. The hatch closes the corresponding reception end and engages a rear wall of the dielectric subassembly. A load protrusion is provided on at least one of the hatch and rear wall. The load protrusion resistibly engages another one of the hatch and rear wall to create a load force along the longitudinal axis that maintains the dielectric subassemblies fully mated with one another.
Certain embodiments of the present invention include an electrical connector including a housing having a reception and a mating end opposite one another along a longitudinal axis of the housing. The electrical connector includes a dielectric subassembly configured to carry, and electrically connect to, an electrical cable. The dielectric subassembly is slidably received in an opening in the reception end of the housing. The electrical connector includes a hatch mounted to the housing proximate the reception end. The hatch closes the reception end and engages a rear wall of the dielectric subassembly. At least one of the hatch and the rear wall have a loading protrusion mounted thereon. The loading protrusion applies a binding load force biasing the dielectric subassembly along the longitudinal axis toward the mating end.


REFERENCES:
patent: 6010343 (2000-01-01), Konoya et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrical connector assembly for coaxial cables does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrical connector assembly for coaxial cables, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrical connector assembly for coaxial cables will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3219780

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.