Prosthetic hip joint assembly

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S022170

Reexamination Certificate

active

06706071

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This Application claims benefit of German Appln. Number 19924676.9 filed on May 29, 1999.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not Applicable
BACKGROUND OF THE INVENTION
The invention relates to an endoprosthesis for the human hip joint. Artificial hip joint assemblies are used in surgery and orthopaedy when the hip joint proper has been destroyed because of diseases, wear or injuries and gives pain when in function.
As a rule, a resection is then made on the destroyed joint portions and an artificial hip joint assembly is implanted. This hip joint assembly, as a rule, is made of plastic and metallic components. The plastic material, as a rule, is polyethylene whereas the metals are forged steels and, especially, titanium alloys.
Whenever the artificial hip joint assembly is moved in the body fine wear debris particles will form. These fine particles are released to the surrounding tissue. The body will then make efforts to neutralize and carry away these microparticles. This is done by foreign matter transporting giant cells. Transport is then effected into the remaining organism via the lymphatic vessel system.
The isolation and neutralization of such microparticles leads to significant alterations to the tissue. An osteolysis might occur, i.e. a loss of the periprosthetic bone portions of the prosthetic assembly. Nowadays, this alteration to the tissue in the adjoining bone by wear debris particles is considered an important cause of the loosening of endoprostheses. Grave alterations to the bone will then be recognized after a period of 10 to 20 years.
Attempts have been made already to reduce the generation of the microparticles with a view to increasing the stability in operation of the prosthetic assemblies.
A substantial improvement to joint functionality was achieved in decades of research work through an optimization of the pairs of sliding elements. Thus, for example, ceramic materials were introduced into endoprosthetics as mating elements that slide. In addition, progress was made particularly in the cementless implantation of prostetic hip joint assemblies. At this point, an important progress is the fact that a firm inlay in titanium or a titanium alloy is introduced in the region of the acetabular cup by locking it in the bony cup. A snugly fitting clamshell-shaped insert in polyethylene will then be placed in this artificial acetabular cup. Fixation of the artificial hip joint in the thigh region is effected by means of a stem which is inserted in the medullary space of the femur. A spherically shaped head is fixed on the end of the prosthetic stem by means of a cone fit.
In addition, the head may include a neck-type shape which has a conical seat to receive a cone of the prosthetic stem with different neck lengths being available. As a rule, the head is made of steel or a ceramic material.
When the artificial hip joint is operative a motion of the head is caused in the acetabular cup. Studies have shown that very fine debris particles may form whenever a step is made.
The acetabular cup or the insert will then undergo thinning and large volumes of wear debris will form in the course of years. Then, the reaction of the organism will frequently be such as to feed as many vessels and reactive tissues as possible to the wear debris region in order to cause foreign matter transporting giant cells to carry away the wear debris particles. As a rule, however, this does not work sufficiently. It is not a rare case that pasty amorphous substances which not only consist of wear debris, but also contain protein and fat constituents, are found in the new joint region after a long time since implantation, on one hand. On the other, thickening occurs in the surrounding vessels. This formation of new vessels and the attempt to carry away the foreign matter particles will then cause a loss of bone structures and a loosening effect.
Revision surgery will then restore a certain stability. A new loosening, however, will occur faster than can be established after the first implantation.
There are also other causes of loosening. Thus, for example, the bone cement serving as an anchoring material was also identified as being a cause of loosening. The result has been that implantations involving no cement are carried out more and more frequently. In doing so, attempts are made to achieve a primary stability which is as high as possible between the prosthetic components and the bone. To this effect, a shape fitting as snugly as possible is aimed at and a trial to obtain it is made by creating a seat which is as good as possible for the components to be anchored. Incorporation of the seat into the bone is mostly made by hand. On the other hand, it is also possible nowadays to design the prosthetic seat in the thigh in a very precise manner by using surgery robots.
Clinical experience has shown that the problems of wear debris formation are also encountered in cementless prosthetic assemblies and can cause the prosthetic components to loosen.
Accordingly, it is the object of the invention to provide a prosthetic hip joint assembly which has a decreased propension to loosen and an increased stability in operation.
BRIEF SUMMARY OF THE INVENTION
The inventive prosthetic hip joint assembly comprises a femoral component with a stem for being anchored in the medullary space of a femur and a head on the distal end of the stem, an acetabular component for being anchored in the pelvic bone with an acetabular cup which pivotedly supports the head of the femoral component, and an articular capsule made of a flexible material, which is located at the femoral component at one end and at the acetabular component at the other end so as to allow the head to move in the acetabular cup and to prevent wear debris from the bearing zone of the head in the acetabular cup from migrating to the outside.
According to the invention, an artificial articular capsule bridges over the femoral component and the acetabular component and, thus, hides the bearing zone in the acetabular cup so that wear debris forming therein cannot exit from the prosthetic hip joint assembly. To this end, for example, the articular capsule may be sealingly connected to an insert of the acetabular cup or to the head and/or to a neck joining the head to the stem. The articular capsule then needs to be of a structure and/or material which permits sufficient movableness of the head which preferably is of a substantially spherical shape, in the acetabular cup. On the other hand, the material and the mounting of the articular capsule requires to be tight enough to prevent microparticles from migrating therethrough. Such microparticles may be a few ms or smaller in size.
The material used for the articular capsule, in particular, is a sheet or foil and/or tissue material. This may be a plastic and/or metallic and/or a natural material. Especially, the materials envisaged are PTFE fibres and/or PETP fibres. It should be particularly advantageous to use Goretex® (a PTFE material available from Gore) or Dacron® (a PETP material available from DuPont (®: a registered trademark). Goretex® has already proved over the recent decades as a material for use in prosthetic vessel assemblies. It is a fibrous material or tissue which may be differing in pore sizes. In addition, it is possible to apply a coating at the inside and/or outside which will cause the pores to largely be sealed. Furthermore, prosthetic vessel assemblies in Dacron® (another fibrous or tissue material) have proved useful, too. Dacron®, as a material for the articular capsule, may also be coated both at its inside and/or outside. In case of need, the articular capsule may consist of a material grown in vitro which has the characteristics of the natural articular capsule tissue.
To allow for a clearance of motion which is as large as possible the articular capsule may be formed as a corrugated bellows. For example, it may have a plurality of concertina-like corrugations. To prevent material ruptures in the region of the corrugations

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Prosthetic hip joint assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Prosthetic hip joint assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Prosthetic hip joint assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3218659

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.