Methods for treatment of multiple sclerosis using peptide...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S021800

Reexamination Certificate

active

06740638

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to methods for treating and preventing multiple sclerosis by using peptide analogues of human myelin basic protein.
BACKGROUND OF THE INVENTION
Multiple sclerosis (MS) is a chronic, inflammatory disease that affects approximately 250,000 individuals in the United States. Although the clinical course may be quite variable, the most common form is manifested by relapsing neurological deficits, in particular, paralysis, sensory deficits, and visual problems.
The inflammatory process occurs primarily within the white matter of the central nervous system and is mediated by T lymphocytes, B lymphocytes, and macrophages. These cells are responsible for the demyelination of axons. The characteristic lesion in MS is called the plaque due to its macroscopic appearance.
Multiple sclerosis is thought to arise from pathogenic T cells that somehow evaded mechanisms establishing self-tolerance, and attack normal tissue. T cell reactivity to myelin basic protein may be a critical component in the development of MS. The pathogenic T cells found in lesions have restricted heterogeneity of antigen receptors (TCR). The T cells isolated from plaques show rearrangement of a restricted number of V&agr; and V&bgr; gene segments. In addition, the TCRs display several dominant amino acid motifs in the third complementarity determining region (CDR), which is the major antigen contact site. All together, three CDR3 motifs have been identified in T cell clones known to recognize an epitope within amino acids 86-106 of myelin basic protein. These motifs were found in 44% of rearranged TCR sequences involving one particular V&bgr; gene rearranged in T cells isolated from brain of two patients with MS.
A definitive treatment for MS has not been established. Historically, corticosteroids and ACTH have been used to treat MS. Basically, these drugs reduce the inflammatory response by toxicity to lymphocytes. Recovery may be hastened from acute exacerbations, but these drugs do not prevent future attacks or prevent development of additional disabilities or chronic progression of MS (Carter and Rodriguez,
Mayo Clinic Proc.
64:664, 1989; Weiner and Hafler,
Ann. Neurol.
23:211, 1988). In addition, the substantial side effects of steroid treatments make these drugs undesirable for long-term use.
Other toxic compounds, such as azathioprine, a purine antagonist, cyclophosphamide, and cyclosporine have been used to treat symptoms of MS. Like corticosteroid treatment, these drugs are beneficial at most for a short term and are highly toxic. Side effects include increased malignancies, leukopenias, toxic hepatitis, gastrointestinal problems, hypertension, and nephrotoxicity (Mitchell,
Cont. Clin. Neurol.
77:231, 1993; Weiner and Hafler, supra). Antibody based therapies directed toward T cells, such as anti-CD4 antibodies, are currently under study for treatment of MS. However, these agents may cause deleterious side effects by immunocompromising the patient.
More recently, cytokines such as IFN-&ggr; and IFN-&bgr; have been administered in attempts to alleviate the symptoms of MS. However, a pilot study involving IFN-&ggr; was terminated because 7 of 18 patients treated with this drug experienced a clinical exacerbation within one month after initiation of treatment. Moreover, there was an increase in the specific response to MBP (Weiner and Hafler, supra).
Betaseron, a modified beta interferon, has recently been approved for use in MS patients. Although Betaseron treatment showed some improvement in exacerbation rates (Paty et al.,
Neurology
43:662, 1993), there was no difference in the rate of clinical deterioration between treated and control groups (IFNB MS Study Group,
Neurology
43:655, 1993; Paty et al., supra). Side effects were commonly observed. The most frequent of such side effects were fever (40%-58% of patients), flu-like symptoms (76% of patients), chills (46% of patients), mylagias (41% of patients), and sweating (23% of patients). In addition, injection site reactions (85%), including inflammation, pain, hypersensitivity and necrosis, were common (IFNB MS Study Group, supra; Connelly,
Annals of Pharm.
28:610, 1994).
In view of the problems associated with existing treatments of MS, there is a compelling need for improved treatments which are more effective and are not associated with such disadvantages. The present invention exploits the use of peptide analogues which antagonize a T cell response to human myelin basic protein to effectively treat MS, while providing other related advantages.
SUMMARY OF THE INVENTION
The present invention generally provides analogues of human myelin basic protein, in which the native L-lysine residue at position 91 is altered. Within one aspect of the invention, the analogue is a peptide derived from residues 87-99 of human myelin basic protein (MBP), wherein the L-lysine residue normally found at position 91 of native peptide is altered to another amino acid. The L-lysine residue at position 91 may be altered to any other amino acid, and preferably to alanine, serine, glycine, glutamic acid, phenylalanine, arginine, asparagine, histidine, leucine or D-lysine. The alteration is preferably a non-conservative change or any D-amino acid. The alteration is also preferably one which results in reduced production of TNF-&agr; from MBP-reactive T cells.
The present invention provides a pharmaceutical composition comprising a peptide analogue according to the embodiments set out above, in which the analogue is contained in a physiologically acceptable carrier or diluent.
The present invention also provides methods for treating multiple sclerosis by administering to a patient with MS a therapeutically effective amount of a pharmaceutical composition containing analogue as described herein. As noted above, in one aspect a peptide analogue comprises amino acid residues 87-99 of human myelin basic protein, wherein the lysine at position 91 is replaced by another amino acid.
These and other aspects will become evident upon reference to the following detailed description and attached drawings. In addition, various references are set forth below which describe in more detail certain procedures or compositions. Each of these references are incorporated herein by reference in their entirety as if each were individually noted for incorporation.


REFERENCES:
patent: 5468481 (1995-11-01), Sharma et al.
patent: 5858980 (1999-01-01), Weiner et al.
patent: 6329499 (2001-12-01), Ling et al.
patent: 6369033 (2002-04-01), Steinman et al.
patent: 6489299 (2002-12-01), Steinman et al.
patent: WO 91/12816 (1991-09-01), None
patent: WO 92/21367 (1992-12-01), None
patent: WO 93/08212 (1993-04-01), None
patent: WO 93/21222 (1993-10-01), None
patent: WO 95/08572 (1995-03-01), None
Abstract 65027 from Biol. Abstr. 81(7): AB-701 (1985) of the article “Monoclonal antibodies to human myelin basic protein,” by Chou et al., J. Neurochem. 46(1): 47-53, 1985.
Acha-Orbea et al., “Limited Heterogeneity of T Cell Receptors from Lymphocytes Mediating Autoimmune Encephalomyelitis Allows Specific Immune Intervention,” Cell 54: 263-273, 1988.
Babbitt et al., “Antigenic competition at the level of peptide-Ia binding,” Proc. Natl. Acad. Sci. USA 83: 4509-4513, 1986.
Bernard C., “Experimental Autoimmune Encephalomyelitis in Mice: Genetic Control of Susceptibility,” Journal of Immunogenetics 3: 263-274, 1976.
Brocke et al., “In Vitro Proliferative Responses and Antibody Titers Specific to Human Acetylcholine Receptor Synthetic Peptides in Patients with Myasthenia Gravis and Relation to HLA Class II Genes,” J. Clin. Invest. 81: 1894-1900, 1988.
Brostoff and Howell, “T Cell Receptors, Immunoregulation, and Autoimmunity,” Clinical Immunology and Immunopathology 62(1): 1-7, 1992.
Carter and Rodriguez, “Immunosuppressive Treatment of Multiple Sclerosis,” Mayo Clin. Proc. 64: 664-669, 1989.
Chou et al., “Identity of Myelin Basic Protein from Multiple Sclerosis and Human Control Brains: Discovery of a Genetic Variant,” Journal of Neurochemistry 30: 745-750, 1978

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for treatment of multiple sclerosis using peptide... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for treatment of multiple sclerosis using peptide..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for treatment of multiple sclerosis using peptide... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3218504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.