Method of manufacturing an inkjet nozzle plate and printhead

Metal working – Method of mechanical manufacture – Fluid pattern dispersing device making – e.g. – ink jet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S417000, C451S041000

Reexamination Certificate

active

06732433

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to inkjet printing. More particularly, this invention relates to an inkjet print cartridge which has improved reliability, and improved ease and reliability of manufacturing. That is, the inkjet cartridge provides a robust design with reduced variability and improved manufacturing. The present invention also relates to an inkjet printer having such an inkjet print cartridge, and to a method for manufacturing such an inkjet print cartridge.
2. Related Technology
Inkjet printers or plotters typically have a print cartridge mounted on a carriage. This carriage is traversed back and forth across the width of a print medium (i.e., usually paper or a plastic plotting film, for example) as the print medium is fed through the printer or plotter. Plural orifices on the print cartridge are fed ink (or other printing fluid) by one or more channels communicating from a reservoir of the print cartridge. Energy applied individually to addressable resistors (or other energy-dissipating elements, for example, to piezoelectric actuators), transfers energy to printing fluid which is within or associated with selected ones of the plural orifices. This energy causes a portion of the printing fluid to momentarily convert to vapor phase and to form a vapor bubble. Thus, this type of printer is also sometimes referred to as a “bubble jet printer.” As a result of the formation and expansion of the vapor bubble, some of the ink is ejected out of the respective orifice toward the print medium (i.e., forming an “ink jet”). As the ink is ejected, the bubble collapses almost simultaneously, allowing more ink from the reservoir to fill the channel. This quick ejection of an ink jet from a selected orifice, and almost simultaneous collapse of the bubble which caused this ejection, allows for the ink jet printing cycle to have a high repetition rate.
The challenges of manufacturing such inkjet print cartridges are many. Among these challenges is the manufacturing of a fine-dimension orifice plate that forms a part of a printhead of the print cartridge. This orifice plate not only defines the plural fine-dimension orifices from which ink jets issue to the print medium, it also forms a part of the ink feed channel(s) bringing ink to the orifices. The orifice plate also defines plural barrier walls, each one of which is positioned between a pair of adjacent orifices. The respective barrier walls between adjacent orifices substantially prevent an ink ejection event at one orifice from causing ink to be ejected from an adjacent orifice.
Conventional ink jet print cartridges or components for such cartridges are seen in U.S. Pat. Nos. 3,930,260; 4,578,687; 4,677,447; 4,943,816; 5,560,837, and 5,706,039. However, none of these conventional ink jet print cartridges are believed to include an orifice plate with plural barrier walls each of which intimately cooperates with a print head thin film structure carried upon a substrate of the print cartridge.
SUMMARY OF INVENTION
In view of the deficiencies of the related technology, an object for this invention is to reduce or overcome one or more of these deficiencies.
Accordingly, the present invention provides an inkjet printhead for ejecting printing fluid during a printing event, the printhead comprising a substrate; a thin-film structure carried on the substrate, the thin-film structure including an energy-dissipating element for providing energy for ejecting printing fluid from the printhead during a printing event; a fine-dimension orifice plate attached to the thin-film structure and defining an orifice from which printing fluid is ejected during a printing event; the fine-dimension orifice plate including a pair of barrier walls spaced apart one on each side of the orifice, the barrier walls each defining a respective one of a pair of end edges, and the pair of end edges being coplanar with one another, whereby the pair of barrier walls at the pair of coplanar end edges each engage the thin-film structure.
According to another aspect, this invention provides a fluid printing cartridge for ejecting printing fluid onto a printing medium, the printing cartridge comprising: a cartridge body defining a printing fluid chamber, and a printing fluid delivery assembly; a printhead having a substrate and receiving printing fluid from the printing fluid chamber via the printing fluid delivery assembly to controllably eject this printing fluid onto the printing medium, the printhead including: a thin-film structure carried on the substrate and including an energy dissipating element for providing energy to the printing fluid to eject the printing fluid from the printhead, a fine-dimension orifice plate attached to the thin-film structure and defining an orifice from which printing fluid is ejected, the fine-dimension orifice plate including a pair of barrier walls spaced apart one on each side of the orifice, the pair of barrier walls each defining a respective one of a pair of end edges, and the pair of end edges being coplanar with one another so that the pair of barrier walls at the pair of end edges each engage the thin-film structure.
Still another aspect of the present invention provides a method of making a fluid jet print head, the method comprising steps of: providing a substrate; forming a thin-film structure on the substrate; including in the thin-film structure an energy-dissipating element for providing energy to eject printing fluid from the printhead; providing a fine-dimension orifice plate, forming in the fine-dimension orifice plate an orifice from which printing fluid is ejected, and a pair of barrier walls spaced apart one on each side of the orifice; utilizing the pair of barrier walls to each define a respective one of a pair of end edges, and forming the pair of end edges to each be coplanar with one another, whereby the pair of barrier walls at the pair of end edges each engage the thin-film structure.
Other objects, features, and advantages of the present invention will be apparent to those skilled in the pertinent arts from a consideration of the following detailed description of a single preferred exemplary embodiment of the invention, when taken in conjunction with the appended drawing figures, which will first be described briefly.


REFERENCES:
patent: 3930260 (1975-12-01), Sicking
patent: 4112436 (1978-09-01), Cone
patent: 4528577 (1985-07-01), Cloutier et al.
patent: 4578687 (1986-03-01), Cloutier et al.
patent: 4616408 (1986-10-01), Lloyd
patent: 4677447 (1987-06-01), Nielsen
patent: 4943816 (1990-07-01), Sporer
patent: 5469200 (1995-11-01), Terai
patent: 5560837 (1996-10-01), Trueba
patent: 5706039 (1998-01-01), Chamberlain et al.
patent: 55-128470 (1980-10-01), None
Chen et al, “A High-Resolution silicon Monolithic Nozzle Array for Inkjet Printing”, Sep. 1997, IEEE Transactions on Electron Devices, vol. 44, No. 9, pp. 1401-1409.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing an inkjet nozzle plate and printhead does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing an inkjet nozzle plate and printhead, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing an inkjet nozzle plate and printhead will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3217872

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.