Logic-based image processing method

Facsimile and static presentation processing – Static presentation processing – Attribute control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S257000, C382S275000, C382S308000

Reexamination Certificate

active

06728004

ABSTRACT:

This invention relates generally to a logic-based image processing method for size dependent filtering and more particularly to logic-based image processing to compensate for marking process characteristics such as blooming, and size and orientation dependent artifacts in a xerographic engine.
CROSS REFERENCE/INCORPORATION BY REFERENCE
The following related applications are hereby cross referenced and incorporated by reference for their teachings:
“USING MULTIPLE DIGITALLY-PRODUCED EXPOSURE LEVELS TO COMPENSATE FOR LASER ABSORPTION IN READ IMAGE-ON-IMAGE XEROGRAPHY,” Crean et at., U.S. Pat. No. 6,111,593.
“METHOD AND APPARATUS FOR COMPENSATION OF BLOOMING ARTIFACTS” Lin at al., U.S. Pat. No. 6,285,463.
“AUTOMATIC ENHANCEMENT OF PRINT QUALITY BASED ON FEATURE SIZE,” Eschbach at al., U.S. Pat. No. 6,275,304.
BACKGROUND OF THE INVENTION
The present invention contemplates the use of logic-based, morphological operations to isolate image structures requiring size dependent modification, such as features that are susceptible to blooming when reproduced by an output device such as a color xerographic image-on-image, or any other type, of marking engine. The blooming condition, resulting from the need to overexpose the photoreceptor for latter-developed colors that are imaged through an existing colorant, does not lend itself to correction by simple adjustment of xerographic parameters or simple color correction.
Heretofore, a number of patents and publications have disclosed logic-based image processing, the relevant portions of which may be briefly summarized as follows:
Crawford, J. L., and C. D. Elzinga, “Improved Output Quality by Modulating Recording Power,” SPSE 41st Annual Conference, May 22-26, 1988, Arlington, Va. Discusses utilizing thickened strokes while performing smoothing, and the use of logical mask processing.
Loce, R. and E. Dougherty,
Enhancement and Restoration of Digital Documents
, SPIE Press, Bellingham Wash., 1997. Provides much tutorial information on logic-based image filtering and relevant morphological operations—Section 1.5 teaches the basic relevant operations.
“Method and Apparatus for Digital Image Darkness Control Using Quantized Fractional Pixels,” Inventors: R. Bracco, et al., Ser. No. 09/072,122 (May 5, 1997 provisional application, February 1998 actual filing), D/97210P,
Barski, L., and R. Gaborski, “Image Character Enhancement using a Stroke Strengthening Kernel,” U.S. Pat. No. 4,791,679, Dec. 13, 1988. Teaches how a character stroke is strengthened by processing video image data with a 16×16 kernel, and moving the kernel one pixel at a time through the image. For each pixel position, sections of the kernel, are selectively filled with black pixels in proportion to the number of black pixels in each section, in accordance with a set of predetermined rules.
Crawford, J., and J. Cunningham, “Boldness Control in an Electrophotographic Machine,” U.S. Pat. No. 5,128,698, Jul. 7, 1992. Control over the placement of an image edge location on the photoconductor of an electrophotographic machine as providing for a range of discharge levels for edge picture elements (PELS) which vary from greater than, to less than, that level used for fully discharged PELS. Such control is achieved independently of machine parameter control by altering edge PEL illumination intensity in accordance with data representing desired edge PEL intensity as the photoconductor sensitivity changes. A system for measuring and controlling the fully discharged PEL level establishes a measure of photoconductor sensitivity and is used for enabling the selection of current edge PEL intensity. Used control of marking process parameters, as opposed to modifying the digital image.
Mailloux, L., and T. Robson, “Dilation of Images without Resolution Conversion for Printer Characteristics,” U.S. Pat. No. 5,483,351, Jan. 9, 1996. An image compensation system which provides dilation or erosion of image features using halfbitting or fullbitting in the rendition of bitmap images, especially on a write-white printer. A region of pixels of an image is isolated which includes two or more correctable pixel locations. A set of state determination rules, based on the formation of pixels in the isolated region, is used to determine a corrected binary pixel state for each of the correctable pixels. Corrections for one correctable pixel may be considered in the state determination rules for adjacent correctable pixels. A single enhanced output pixel is provided for each image input pixel, thereby preserving the original image resolution. Performing enhancements on multiple input pixels. Teaches employment of “halfbits” to thicken strokes by a factional amount while maintaining printer resolution.
Murata, K., “Image Processing Method and Apparatus,” U.S. Pat. No. 5,450,208, Sep. 12, 1995. The image processing apparatus for smoothing edges in a reproduced image includes an image data generating circuit for generating image data including a specified pixel and a plurality of pixels surrounding the specified pixel; a sub-pixel data generating circuit for dividing the specified pixel included in the image data into N sub-pixels, for detecting the condition of the specified pixel and the condition of the plurality of pixels surrounding the specified pixel included in the image data by matching the image data with a plurality of predetermined patterns, and for generating sub-pixel data for determining the number and position of sub-pixels to be exposed of the N sub-pixels, based on the condition of the specified pixel and the condition of the plurality of pixels surrounding the specified pixel; and supplying circuit for supplying the sub-pixel data to exposure circuit which makes exposure. The sub-pixel data generating circuit generates sub-pixel data for exposing M sub-pixels of the N sub-pixels, when the specified pixel is detected to be an exposed pixel which requires no exposure correction, where M is smaller than N. The invention here relates to an image processing method and an image processing apparatus for smoothing jagged edges of characters, etc., and for stably reproducing thin lines and isolated dots, so as to achieve an image reproduction of high quality and to achieve an ideal tone characteristic by correcting the tone characteristic of digital halftone images.
SUMMARY OF THE INVENTION
Image-on-image (IOI) marking engines, where images are sequentially exposed and developed, typically produce a “blooming” artifact in the later-imaged colors (e.g., magenta and cyan). Unfortunately, the blooming artifact does not easily lend itself to correction merely by adjusting the controls or setpoints of the xerographic engine. On the other hand, it has been discovered that it is possible to employ an image processing solution that will reduce the blooming artifact to an acceptable level. A morphological, or logic-based, image processing method may be employed to compensate for the loss of shadow detail associated with an observed blooming artifact.
In an image-on-image xerographic marking engine, the magenta and cyan separations are typically developed over the yellow separation. In IOI, the exposure level for magenta and cyan is therefore increased, compared to the yellow separation exposure level, to compensate for the transmission loss when the latter separation exposure occurs through the developed yellow image (yellow toner). However, in regions of the photoreceptor surface where there is no yellow toner, the exposure level of the latter separations will likely be too high-resulting in excessive line growth and loss of shadow detail called blooming. Blooming causes “holes” within a latent image to fill in with toner, which in turn results in the loss of shadow detail in halftoned images.
Although it may be possible to correct the exposure intensity on a pixel-by-pixel basis, the level of registration accuracy and hardware complexity necessary to enable such a correction is not readily achievable in commercial equipment. Similarly, other methods may be utilized to minimize the blooming artifacts. On

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Logic-based image processing method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Logic-based image processing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Logic-based image processing method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3217605

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.