Ultrasound probe for ultrasound examination system

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S437000, C600S459000, C604S510000, C604S528000

Reexamination Certificate

active

06673021

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Art
This invention relates to an ultrasound examination system, and more particularly to an ultrasound probe which can be introduced into a body cavity through a narrow guide passage like a biopsy channel of an endoscope or the like.
2. Prior Art
Ultrasound probes of the sort which are adapted to be inserted into a body cavity by way of an endoscope or a similar guide means have been well known in the art and widely used for ultrasound examination systems. For instance, Laid-Open Japanese Patent Application H11-56836 discloses an ultrasound examination system employing an ultrasound probe which is designed to be introduced into a body cavity through a biopsy channel of an endoscope. The ultrasound probe of this ultrasound examination system has an ultrasound scanner head with an ultrasound transducer element, attached to the fore distal end of a flexible cord to be inserted into an endoscopic biopsy channel. A connector is provided at the base or proximal end of the flexible cord for connection to an ultrasound image observation terminal with an ultrasound signal processor and a viewing screen.
In a case where an endoscopic biopsy channel is used as a guide means, as a matter of course the outside diameter of the ultrasound probe depends on the inside diameter of the endoscopic biopsy channel. In this regard, it is the flexible cord of the probe that is placed within a biopsy channel of an endoscope. The ultrasound probe may be introduced into an endoscopic biopsy channel either through an entrance opening of the biopsy channel through which a biopsy or surgical instrument is normally inserted into the biopsy channel or inversely through an exit opening through which an inserted biopsy or surgical instrument is projected within a body cavity. This means that at least one end of the ultrasound probe is free from diametrical restrictions as imposed by the inside diameter of the biopsy channel. Namely, the diameter of the ultrasound scanner head at the fore distal end of the flexible cord or of the connector at the proximal end f the flexible cord can be larger than that of the endoscopic biopsy channel. In the case of the prior art ultrasound probe mentioned above, the ultrasound scanner head which accommodates a large-size ultrasound transducer element is larger than the endoscopic biopsy channel in diameter, while the flexible cord and connector are formed smaller than the inside diameter of the biopsy channel. Because of fragility of the thin and narrow connector, an adaptor is detachably attached to the connector at the time of coupling same with an ultrasound scan control unit which is connected from an ultrasound image observation terminal.
In this instance, the ultrasound transducer which is provided on the above-mentioned prior art ultrasound probe is of a single-element type which is adapted for mechanical radial scans. For this purpose, threaded through the flexible cord is a flexible transmission shaft having tightly wound coils fitted within a flexible sleeve to transmit rotations to the ultrasound transducer element, which is connected to the fore distal end of the flexible shaft. The opposite base end of the flexible shaft is coupled with a rotational shaft which is provided within the connector. The rotational shaft of the connector is connected to a drive shaft which is provided within a casing of the ultrasound scan control unit, along with an electric drive motor which is coupled with the drive shaft and an encoder which is provided in association with the drive shaft to detect rotational angles of the latter.
In addition to the ultrasound probes of the above-mentioned mechanical radial scan type, there have been in use the so-called electronic scan type ultrasound probes. In the case of an electronic scan type probe, the ultrasound transducer consists of a large number of transducer elements which are arranged in a predetermined direction, for example, in a linear direction or in radial directions. A signal cable is connected to each one of the ultrasound transducer elements to transmit and receive ultrasound signals separately by the respective transducer elements. In the case of an electronic scan type ultrasound probe of this sort, the pattern or focus position of an ultrasound scan can be changed to cope with various ultrasound examinations, by suitably adjusting the drive timing of the respective ultrasound transducer elements.
Since the ultrasound transducer on an electronic scan type probe contains a large number of transducer elements, it is difficult to reduce its diameter down to a size which can easily pass through a biopsy channel of an endoscope. However, as in the case of the above-mentioned prior art probe construction, the ultrasound probe can be placed in an endoscopic biopsy channel by inserting the probe through an exit opening of the biopsy channel at the fore distal end of the endoscope. For an electronic scan type ultrasound probe, it is not necessary to have a flexible transmission shaft within the flexible cord which is connected to the ultrasound scanner head. Therefore, a necessary number of signal cables can be relatively easily passed through the flexible cord if the diameter of each signal cable is reduced to a suitable degree. However, in the case of an electronic scan type ultrasound probe which requires a large number of contact points, it becomes necessary to provide a large connector at the proximal end of the flexible cord. In short, in the case of an electronic scan type probe, larger the number of the ultrasound transducer elements, larger becomes the size of the connector. Therefore, even if the flexible cord of an electronic scan type probe is thin and narrow enough for passage through an endoscopic biopsy channel, it has been often found difficult to insert the probe into a narrow guide channel or passage of an endoscope because of bulkiness of the ultrasound scanner head and the connector which are provided at the head and tail ends of the flexible cord, despite various advantages of electronic scan type probe in ultrasound examinations.
SUMMARY OF THE INVENTION
Under the circumstances as discussed above, it is an object of the present invention to make it possible to insert and place an electronic scan type ultrasound probe into a narrow passage like a biopsy channel of an endoscope.
It is another object of the present invention to make it possible to insert into and pass through a narrow guide passage a connector portion which is provided at the proximal end of a flexible cord of an electronic scan type ultrasound probe and which usually incorporates a large number of terminals for connection to an ultrasound signal processor of an ultrasound image observation terminal.
In order to achieve the above-stated objectives, according to the present invention, there is provided an ultrasound probe for use on an ultrasound examination system which is largely composed of an ultrasound probe to be introduced into a body cavity by way of a guide passage and an ultrasound image observation terminal, the ultrasound probe including an ultrasound scanner head attached to a distal end of a flexible cord to be placed in the guide passage at the time of introduction into a body cavity and constituted by a plural number of ultrasound transducer elements for making electronic scans, a plural number of signal lines passed through the flexible cord and connected respectively to the ultrasound transducer elements, a proximal end portion of the flexible cord being led out of the guide passage and disconnectibly connected to an ultrasound signal processor of the ultrasound image observation terminal, characterized by the provision of: a flexible wiring film in the shape of a relatively narrow strip having a root end portion thereof fixedly attached to a proximal end portion of the flexible cord of the ultrasound probe and adapted to be coiled into a helical roll of a cylindrical shape along an axial extension line of the flexible cord for passage through the guide passage; the flexible wiring film

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ultrasound probe for ultrasound examination system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ultrasound probe for ultrasound examination system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrasound probe for ultrasound examination system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3216563

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.