Optical: systems and elements – Deflection using a moving element – Using a periodically moving element
Reexamination Certificate
2002-06-29
2004-07-13
Robinson, Mark A. (Department: 2872)
Optical: systems and elements
Deflection using a moving element
Using a periodically moving element
C359S223100, C359S204200
Reexamination Certificate
active
06762867
ABSTRACT:
TECHNICAL FIELD
The present invention relates to scanned light devices and, more particularly, to scanned light beam displays and imaging devices for viewing or collecting images.
BACKGROUND OF THE INVENTION
A variety of techniques are available for providing visual displays of graphical or video images to a user. In many applications cathode ray tube type displays (CRTs), such as televisions and computer monitors produce images for viewing. Such devices suffer from several limitations. For example, CRTs are bulky and consume substantial amounts of power, making them undesirable for portable or head-mounted applications.
Matrix addressable displays, such as liquid crystal displays and field emission displays, may be less bulky and consume less power. However, typical matrix addressable displays utilize screens that are several inches across. Such screens have limited use in head mounted applications or in applications where the display is intended to occupy only a small portion of a user's field of view. Such displays have been reduced in size, at the cost of increasingly difficult processing and limited resolution or brightness. Also, improving resolution of such displays typically requires a significant increase in complexity.
One approach to overcoming many limitations of conventional displays is a scanned beam display, such as that described in U.S. Pat. No. 5,467,104 of Furness et al., entitled VIRTUAL RETINAL DISPLAY, which is incorporated herein by reference. As shown diagrammatically in 
FIG. 1
, in one embodiment of a scanned beam display 
40
, a scanning source 
42
 outputs a scanned beam of light that is coupled to a viewer's eye 
44
 by a beam combiner 
46
. In some scanned displays, the scanning source 
42
 includes a scanner, such as scanning mirror or acousto-optic scanner, that scans a modulated light beam onto a viewer's retina. In other embodiments, the scanning source may include one or more light emitters that are rotated through an angular sweep.
The scanned light enters the eye 
44
 through the viewer's pupil 
48
 and is imaged onto the retina 
59
 by the cornea. In response to the scanned light the viewer perceives an image. In another embodiment, the scanned source 
42
 scans the modulated light beam onto a screen that the viewer observes. One example of such a scanner suitable for either type of display is described in U.S. Pat. No. 5,557,444 to Melville et al., entitled MINIATURE OPTICAL SCANNER FOR A TWO-AXIS SCANNING SYSTEM, which is incorporated herein by reference.
Sometimes such displays are used for partial or augmented view applications. In such applications, a portion of the display is positioned in the user's field of view and presents an image that occupies a region 
43
 of the user's field of view 
45
, as shown in FIG. 
2
A. The user can thus see both a displayed virtual image 
47
 and background information 
49
. If the background light is occluded, the viewer perceives only the virtual image 
47
, as shown in FIG. 
2
B.
One difficulty that may arise with such displays is raster pinch, as will now be explained with reference to 
FIGS. 3-5
. As shown diagrammatically in 
FIG. 3
, the scanning source 
42
 includes an optical source 
50
 that emits a beam 
52
 of modulated light. In this embodiment, the optical source 
50
 is an optical fiber that is driven by one or more light emitters, such as laser diodes (not shown). A lens 
53
 gathers and focuses the beam 
52
 so that the beam 
52
 strikes a turning mirror 
54
 and is directed toward a horizontal scanner 
56
. The horizontal scanner 
56
 is mechanically resonant scanner that scans the beam 
52
 periodically in a sinusoidal fashion. The horizontally scanned beam then travels to a vertical scanner 
58
 that scans periodically to sweep the horizontally scanned beam vertically. For each angle of the beam 
52
 from the scanners 
58
, an exit pupil expander 
62
 converts the beam 
52
 into a set of beams 
63
. Eye coupling optics 
60
 collect the beams 
63
 and form a set of exit pupils 
65
. The exit pupils 
65
 together act as an expanded exit pupil for viewing by a viewer's eye 
64
. One such expander is described in U.S. Pat. No. 5,701,132 of Kollin et al., entitled VIRTUAL RETINAL DISPLAY WITH EXPANDED EXIT PUPIL, which is incorporated herein by reference. One skilled in the art will recognize that, for differing applications, the exit pupil expander 
62
 may be omitted, may be replaced or supplemented by an eye tracking system, or may have a variety of structures, including diffractive or refractive designs. For example, the exit pupil expander 
62
 may be a planar or curved structure and may create any number or pattern of output beams in a variety of patterns. Also, although only three exit pupils are shown in 
FIG. 3
, the number of pupils may be almost any number. For example, in some applications a 15 by 15 array may be suitable.
Returning to the description of scanning, as the beam scans through each successive location in the beam expander 
62
, the beam color and intensity is modulated in a fashion to be described below to form a respective pixel of an image. By properly controlling the color and intensity of the beam for each pixel location, the display 
40
 can produce the desired image.
Simplified versions of the respective waveforms of the vertical and horizontal scanners are shown in FIG. 
4
. In the plane 
66
 (FIG. 
3
), the beam traces the pattern 
68
 shown in FIG. 
5
. Though 
FIG. 5
 shows only eleven lines of image, one skilled in the art will recognize that the number of lines in an actual display will typically be much larger than eleven. As can be seen by comparing the actual scan pattern 
68
 to a desired raster scan pattern 
69
, the actual scanned beam 
68
 is “pinched” at the outer edges of the beam expander 
62
. That is, in successive forward and reverse sweeps of the beam, the pixels near the edge of the scan pattern are unevenly spaced. This uneven spacing can cause the pixels to overlap or can leave a gap between adjacent rows of pixels. Moreover, because the image information is typically provided as an array of data, where each location in the array corresponds to a respective position in the ideal raster pattern 
69
, the displaced pixel locations can cause image distortion.
For a given refresh rate and a given wavelength, the number of pixels per line is determined in the structure of 
FIG. 3
 by the mirror scan angle &thgr; and mirror dimension D perpendicular to the axis of rotation. For high resolution, it is therefor desirable to have a large scan angle &thgr; and a large mirror. However, larger mirrors and scan angles typically correspond to lower resonant frequencies. A lower resonant frequency provides fewer lines of display for a given period. Consequently, a large mirror and larger scan angle may produce unacceptable refresh rates.
SUMMARY OF THE INVENTION
A display includes a primary scanning mechanism that simultaneously scans a plurality of beams of light both horizontally and vertically along substantially continuous scan paths where each beam defines a discrete “tile” of an image. In the preferred embodiment, the scanning mechanism includes a plurality of mirrors that pivot to sweep the beams horizontally.
Optical sources are aligned to provide the beams of light to the scanning mechanism from respective input angles. The input angles and orientations of the mirrors are selected such that the scanning mechanism sweeps the beams of light across respective distinct regions of an image field. Because the respective regions are substantially non-overlapping, each beam of light generates a substantially spatially distinct region of the image. The respective regions are immediately adjacent or may overlap slightly, so that the spatially distinct regions are “tiled” to form a contiguous image. Because movement of the mirrors can produce simultaneous movement of the beams, the display can produce each of the spatially separate regions simultaneously. The scan angle &thgr; and the mirror dimensions in part det
Lippert Thomas M.
Tegreene Clarence T.
Amari Alessandro
Microvision Inc.
Robinson Mark A.
LandOfFree
Scanned display with plurality of scanning assemblies does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Scanned display with plurality of scanning assemblies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scanned display with plurality of scanning assemblies will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3214313