Dynamic magnetic information storage or retrieval – Head – Magnetoresistive reproducing head
Reexamination Certificate
2003-03-28
2004-05-04
Tupper, Robert S. (Department: 2652)
Dynamic magnetic information storage or retrieval
Head
Magnetoresistive reproducing head
C360S322000
Reexamination Certificate
active
06731478
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a novel magnetoresistive effect head and a magnetic recording and reproducing apparatus using the same, and more particularly to a magnetoresistive effect head suitable for a recording head for reproducing information of a magnetic recording medium by utilizing a giant magnetoresistive effect and a magnetic recording and reproducing apparatus using the same.
A reproducing head as well as a recording head are mounted on a magnetic recording and reproducing apparatus, and an AMR (Anisotropic Magnetoresistive) head which utilizes an anisotropic magnetoresistive effect has been proposed as a reproducing head. In the AMR head, since it is required to suppress a Barkhausen noise generated by the head to prevent a malfunction of the magnetic recording and reproducing apparatus, a magnetic domain control layer for maintaining the magnetoresistive effect layer in a single magnetic domain state is provided in the head.
In a first generation AMR head having the magnetic domain control layer provided therein, a magnetic domain control system called a patterned exchange system as disclosed in U.S. Pat. No. 4,663,685 is adopted. In this system, a magnetic domain control layer formed of an antiferromagnetic film is patterned, the patterned magnetic domain control layer is stacked only in end regions of a magnetoresistive effect film (MR film), this region is maintained in a single magnetic domain state, and a central magnetic sensing area (a region sandwiched between a pair of electrodes for transducing a change in a magnetic field to an electrical signal) of the MR films is induced to a single magnetic domain state.
It has been reported that the AMR head adopting the patterned exchange system can improve a sensitivity by increasing a spacing of the magnetic domain control layers to be larger than a spacing of electrodes, as disclosed in N. Miyamoto et al., “Track Profile Characteristics of MR Heads with an NiO Domain Control Layer, Journal of the Magnetics Society of Japan, Vol. 19, No. 2, pp. 105-108 (1995) (in Japanese).
In a second generation AMR head, a hard biasing system is adopted as disclosed in JP-A-3-125311 in order to facilitate the manufacture as compared with the first generation AMR head. In this system, both ends of the MR film extended to the end regions are cut off, the MR film is formed only in the magnetic sensing area, and the magnetic sensing area is maintained in a single magnetic domain state by a magnetic field generated by a permanent magnet. It has also been proposed to use a lamination of ferromagnetic films and antiferromagnetic films instead of the permanent magnet as disclosed in JP-A-7-57223.
On the other hand, as a next generation high sensitivity MR head which takes the place of the AMR head, a spin valve head utilizing a giant magnetoresistive effect has been proposed as disclosed in JP-A-4-358310. The spin valve head comprises, as a magnetoresistive effect film, a first ferromagnetic film whose direction of magnetization is changed by a magnetic field from a magnetic recording medium, a second ferromagnetic film whose direction of magnetization is fixed, and a non-magnetic conductive film inserted between the first and second ferromagnetic films. The second ferromagnetic film is stacked on an antiferromagnetic film or a permanent magnet which serves to fix the direction of magnetization of the second ferromagnetic film. In order to enhance an output of the spin valve head, a dual spin valve head has been proposed as an application of the spin valve head as disclosed in JP-A-5-347013. The dual spin valve head comprises, as a magnetoresistive effect film, a first ferromagnetic film whose direction of magnetization is changed by a magnetic field from a magnetic recording medium, second and third ferromagnetic films whose directions of magnetization are fixed, a non-magnetic conductive film inserted between the first ferromagnetic film and the second ferromagnetic film and a non-magnetic conductive film inserted between the first ferromagnetic film and the third ferromagnetic film. The second ferromagnetic film and the third ferromagnetic film are stacked above and below the first ferromagnetic film to oppose the first ferromagnetic film, and the second and third ferromagnetic films are directly stacked on antiferromagnetic films or permanent magnet films which serve to fix the directions of magnetization of the second and third ferromagnetic films.
In those spin valve heads, since the direction of magnetization is changed by the magnetic field from the magnetic recording head in the first ferromagnetic film, it is required to maintain the first ferromagnetic film in the single magnetic domain state.
The spin valve head has been known as one which takes the place of the AMR head, but in the prior art spin valve head which uses the hard biasing system, a reproduced waveform may be distorted or a reproduced output may be decreased by a strength of the magnetic domain control layer.
For example, when a strength of the magnetic domain control layer is not enough to bring the first ferromagnetic film to the single magnetic domain state, the reproduced waveform may be distorted and the magnetic recording and reproducing apparatus may malfunction. This distortion is usually called a Barkhausen noise and it has been proved that a cause of the generation of this noise is discontinuous movement of magnetization at the ends of the first ferromagnetic film. This Barkhausen noise is easier to be generated in the spin valve head than in the AMR head. This is because, in the spin valve head, the operation is mainly conducted while the magnetization of the first ferromagnetic film is oriented laterally and in the AMR head, the operation is mainly conducted while the magnetization of the MR film is inclined to approximately 45 degrees. Namely, in the spin valve head, when leakage magnetic fields (positive and negative) of the magnetic recording medium are applied, the magnetization at the ends of the first ferromagnetic film are vertically inverted. This is because a static energy is high when the magnetization at the ends of the first ferromagnetic film is directed laterally while the strength of the magnetic domain control layer is not sufficient so that the oblique upward or oblique downward direction of magnetization is in an instable state. On the other hand, in the AMR head, since the magnetization at the ends of the first ferromagnetic film is always oriented obliquely, the discontinuous movement of the magnetization as observed in the spin valve head does not take place.
When the strength of magnetization is sufficient to a certain extent and the spacing of the electrodes of the spin valve head is reduced to increase a track density of the magnetic recording and reproducing apparatus, an output (sensitivity) per unit electrode spacing abruptly decreases. The output of the spin valve head increases basically in proportion to the electrode spacing. This is because the longer the areas in which the voltage changes are serially connected, the larger is the overall change in the voltage. However, when the electrode spacing is simply reduced in the prior art hard biasing system spin valve head, the output (sensitivity) per unit electrode spacing abruptly decreases. Particularly when the electrode spacing is reduced to 2 &mgr;m or less, the sensitivity of the head is reduced to 90% or less of its inherent sensitivity. A cause for the reduction of the sensitivity is the low sensitivity at the left and right end regions of the first ferromagnetic film caused by the influence of the magnetic domain control layer stacked below the electrode. Accordingly, as the electrode spacing is reduced and the influence of the magnetic domain control layer increases, a proportion of the high sensitivity central area is reduced, and as a result, the sensitivity is reduced. Accordingly, in the prior art hard biasing system spin valve head, when the electrode spacing is simply reduced, the sensitivity is abruptly reduced and the malfu
Kawato Yoshiaki
Nakamoto Kazuhiro
Antonelli Terry Stout & Kraus LLP
Hitachi , Ltd.
Tupper Robert S.
LandOfFree
Magnetoresistive effect head does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Magnetoresistive effect head, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetoresistive effect head will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3206973