Optoelectronic distance measuring device and operating...

Optics: measuring and testing – Range or remote distance finding – With photodetection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S005010, C356S005100

Reexamination Certificate

active

06704097

ABSTRACT:

BACKGROUND OF THE INVENTION
Optoelectronic distance measuring devices, especially laser distance measuring devices, in which a distance to be measured is displayed on a display of the device immediately after being measured are known. The measured values are subjected to evaluation algorithms by entering determined measurement value processing commands and the results obtained from this are shown on the display.
Devices of this type are sold globally. As a result, there is not only a demand for improvement and expansion of such measuring devices with respect to their function possibilities, but also there is a demand for representing the information shown on the display in a language-independent clear manner and for simplified handling of this information, particularly with regard to further processing.
SUMMARY OF THE INVENTION
With respect to an operating method for an optoelectronic distance measuring, measurement signal processing and display device whose measurement signals are stored within the device, combined with function and display, the invention provides that the current function state of the device and changes in the function state which can be carried out externally are shown graphically only by icons, numbers and/or symbols, and the active changes in the currently displayed function state are carried out exclusively by selecting the icon and/or by means of entering numbers.
In accordance with the invention, the interface between the user and the measuring device, also known as man-machine interface (MMI), is based entirely on icons, numbers and/or symbols which are graphically depicted. Accordingly, no country-specific letters, characters or the like are used to display information.
Such icons, numbers and/or symbols are also used for entering information into the measuring device and for its operation; that is, the measuring device is operated only by country-independent operator control elements so that no language-specific knowledge is necessary to operate it.
Icon and symbols also include very simple graphic elements such as lines, points and other graphic elements by which information can be conveyed.
The exclusive use of country-independent graphic symbols is advantageous such that the measuring device can be used in the same way in every country of the world without the need for corresponding conversion of the device or for the manufacture and storage of such measuring devices which are individualized with respect to language. Accordingly, time-consuming adaptation to respective languages and the use of special fonts which are necessary, for example, for Latin, katekana or even kanji, can be dispensed with entirely.
The graphic depiction of information is preferably carried out on a display. Each individual combination of symbols shown on the display corresponds to a function state of the measuring device. These function states are linked in a hierarchical manner. A change from one function state to the other is accomplished by operating the measuring device or by automatic activity in the measuring device and is revealed by a change in the icon, symbol and/or number combination or by means of audible signals.
If the measuring device still requires certain data, for example, to measure a distance, the user is notified of this, for example, by the addition and display of a new symbol, by the blinking of a symbol, which is already shown, or the like, which corresponds to a new function state. The user can then convey the desired information to the measuring device by selecting the icon or by entering numbers, so that the device enters a new function state which is represented by a new graphic combination. In this way it is possible to solve complex tasks interactively by running through a chain of function states; this represents a substantially simplified user control for the inexperienced user due to the exclusively graphic display of the individual function states. This user can, as it were, proceed from branch to branch on the graphic function tree. Changes in the currently displayed function state which are carried out by the user by operating the measuring device are referred to hereinafter as active changes of the function state.
In order to make the graphic representation as manageable as possible, the device itself determines which of the displayed data are superfluous during a change in the function state and cancels them automatically.
All of the active function state changes caused by or attempted by the user are checked for plausibility by the measuring device. For example, when measuring a triangle, the measured hypotenuse must be longer than the other two measured sides. This has the advantage that the measuring device can notify the user in such a case by means of a graphic warning and can suggest a correction in the form of an icon or symbol. The user can then accept the correction suggestion by selecting this icon or symbol.
The icons or symbols are selected by actuating input elements which are associated with these icons or symbols, e.g., keys or by a touch screen method in which a change in function state is caused by touching the appropriate icon directly on the display.
The symbols and icons are preferably designed such that they can be distinguished easily from one another and are self-explanatory, so that different groups of function states such as measurement function states, setup function states and computing function states can be easily differentiated or delimited, which represents a further simplification of operation.
The function states which are linked in a hierarchical manner can be divided into levels. For example, the respective start states for measurements of distance, surface or volume all form one level. This level—the current measurement job in this example—is indicated by a symbol or an icon or icon group on the display. The implementation of the measurement corresponding to this, that is, the selectable modes for executing this measurement task form a second level of function states which are on a lower hierarchical level than the level of the measurement job. The selectable execution modes are represented by a series of icons on the display, and the icon group defining the measurement job and the icon group representing the execution modes corresponding thereto are shown on the display simultaneously. This has the advantage that one's location in the function state tree, i.e., the task that the measuring device is handling, can be seen at a glance.
The evaluation of measured distance values and the execution of processing commands entered by the user is carried out inside the device by algorithms which combine the distance values, particularly trigonometrically, and show the results visually by an icon or number.


REFERENCES:
patent: 4730190 (1988-03-01), Win et al.
patent: 5100229 (1992-03-01), Lundberg et al.
patent: 5486690 (1996-01-01), Ake
patent: 5623335 (1997-04-01), Bamberger
patent: 5689330 (1997-11-01), Gerard et al.
patent: 5949529 (1999-09-01), Dunne et al.
patent: 6108071 (2000-08-01), Landry et al.
patent: 6229598 (2001-05-01), Yoshida

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optoelectronic distance measuring device and operating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optoelectronic distance measuring device and operating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optoelectronic distance measuring device and operating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3202010

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.