MOCVD formation of Cu2S

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Of specified material other than unalloyed aluminum

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S744000

Reexamination Certificate

active

06798068

ABSTRACT:

FIELD OF INVENTION
The present invention relates generally semiconductor fabrication and, in particular, to a system and methodology for forming a conductivity facilitating layer via chemical vapor deposition (CVD) utilizing a metal organic (MO) precursor.
BACKGROUND OF THE INVENTION
In the semiconductor industry there is a continuing trend toward increasing device densities, throughput and yield. To increase device densities there have been, and continue to be, efforts toward scaling down semiconductor device dimensions (e.g., at sub-micron levels). In order to accomplish such densities, smaller feature sizes and more precise feature shapes are required. This may include the width and spacing of interconnecting lines, spacing and diameter of contact holes, and the surface geometry, such as corners and edges, of various features. To increase throughput, the number of required processing steps can be reduced and/or the time required for those processing steps can be reduced. To increase yield, which is the percentage of finished products that leave a fabrication process as compared to the number of products that enter the fabrication process, control and/or quality of individual fabrication processes can be improved.
Semiconductor fabrication is a manufacturing process employed to create semiconductor devices in and on a wafer surface. Polished, blank wafers come into semiconductor fabrication, and exit with the surface covered with large numbers of semiconductor devices. Semiconductor fabrication includes a large number of steps and/or processes that control and build the devices—basic processes utilized include layering, doping, heat treatments and patterning. Layering is an operation that adds thin layers to the wafer surface. Layers can be, for example, insulators, semiconductors and/or conductors and are grown or deposited via a variety of processes. Common deposition techniques include, for example, evaporation and sputtering. Doping is a process that adds specific amounts of dopants to the wafer surface. The dopants can cause the properties of layers to be modified (e.g., change a semiconductor to a conductor). A number of techniques, such as thermal diffusion and ion implantation can be employed for doping. Heat treatments are another basic operation in which a wafer is heated and cooled to achieve specific results. Typically, in heat treatment operations, no additional material is added or removed from the wafer, although contaminates and vapors may evaporate from the wafer. One common heat treatment is annealing, which repairs damage to crystal structure of a wafer/device generally caused by doping operations. Other heat treatments, such as alloying and driving of solvents, are also employed in semiconductor fabrication.
The volume, use and complexity of computers and electronic devices are continually increasing as computers are consistently becoming more powerful and new and improved electronic devices are continually developed (e.g., digital audio players, video players). Additionally, the growth and use of digital media (e.g., digital audio, video, images, and the like) have further pushed development of these devices. Such growth and development has vastly increased the amount of information desired/required to be stored and maintained for computer and electronic devices.
Generally, information is stored and maintained in one or more of a number of types of storage devices. Storage devices include long term storage mediums such as, for example, hard disk drives, compact disk drives and corresponding media, digital video disk (DVD) drives, and the like. The long term storage mediums typically store larger amounts of information at a lower cost, but are slower than other types of storage devices. Storage devices also include memory cells which are often, but not always, short term storage mediums. Short term memory cells tend to be substantially faster than long term storage mediums. Such short term memory cells include, for example, dynamic random access memory (DRAM), static random access memory (SRAM), double data rate memory (DDR), fast page mode dynamic random access memory (FPMDRAM), extended data-out dynamic random access memory (EDODRAM), synchronous dynamic random access memory (SDRAM), VideoRAM (VRAM), flash memory, read only memory (ROM), and the like.
Memory cells can generally be subdivided into volatile and non-volatile types. Volatile memory cells usually lose their information if they lose power and typically require periodic refresh cycles to maintain their information. Volatile memory cells include, for example, random access memory (RAM), DRAM, SRAM and the like. Non-volatile memory cells maintain their information whether or not power is maintained to the devices. Non-volatile memory cells include, but are not limited to, ROM, programmable read only memory (PROM), erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM), flash EEPROM the like. Volatile memory cells generally provide faster operation at a lower cost as compared to non-volatile memory cells.
Memory cells often include arrays of memory cells. Each memory cell can be accessed or “read”, “written”, and “erased” with information. The memory cells maintain information in an “off” or an “on” state, also referred to as “0” and “1”. Typically, a memory cell is addressed to retrieve a specified number of byte(s) (e.g., 8 memory cells per byte). For volatile memory cells, the memory cells must be periodically “refreshed” in order to maintain their state. Such memory cells are usually fabricated from semiconductor devices that perform these various functions and are capable of switching and maintaining the two states. The devices are often fabricated with inorganic solid state technology, such as, crystalline silicon devices. A common semiconductor device employed in memory cells is the metal oxide semiconductor field effect transistor (MOSFET).
The proliferation and increased usage of portable computer and electronic devices has greatly increased demand for memory cells. Digital cameras, digital audio players, personal digital assistants, and the like generally seek to employ large capacity memory cells (e.g., flash memory, smart media, compact flash, . . . ). The increased demand for information storage is commensurate with memory cells having an ever increasing storage capacity (e.g., increase storage per die or chip). A postage-stamp-sized piece of silicon may, for example, contain tens of millions of transistors, each transistor as small as a few hundred nanometers. However, silicon-based devices are approaching their fundamental physical size limits. Inorganic solid state devices are generally encumbered with a complex architecture which leads to high cost and a loss of data storage density. The volatile semiconductor memories based on inorganic semiconductor material require a near constant supply of electric current, which produces heating and high electric power consumption in order to merely maintain stored information. Non-volatile semiconductor memory cells, which are also based on inorganic semiconductor material, do not require such constant supplies of power in order to maintain stored information. However, non-volatile semiconductor memory cells have a reduced data rate, high power consumption and a large degree of complexity as compared with typical volatile memory cells.
Further, as the size of inorganic solid state devices decreases and integration increases, sensitivity to alignment tolerances can also increase making fabrication markedly more difficult. Formation of features at small minimum sizes does not imply that the minimum size can be used for fabrication of working circuits. It is necessary to have alignment tolerances which are much smaller than the minimum size, such as one quarter the minimum size, for example. Thus, further device shrinking and density increasing may be limited for inorganic memory cells. Furthermore, such shrinkage for inorganic non-volatile memory cells, while meeting increased performance

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

MOCVD formation of Cu2S does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with MOCVD formation of Cu2S, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and MOCVD formation of Cu2S will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3201931

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.