Electromagnetic interference immune tissue invasive system

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06760628

ABSTRACT:

FIELD OF THE PRESENT INVENTION
The present invention relates generally to an implantable device that is immune or hardened to electromagnetic insult or interference. More particularly, the present invention is directed to implantable systems that utilize fiber optic leads and other components to hardened or immune the systems from electromagnetic insult, namely magnetic-resonance imaging insult.
BACKGROUND OF THE PRESENT INVENTION
Magnetic resonance imaging (“MRI”) has been developed as an imaging technique adapted to obtain both images of anatomical features of human patients as well as some aspects of the functional activities of biological tissue. These images have medical diagnostic value in determining the state of the health of the tissue examined.
In an MRI process, a patient is typically aligned to place the portion of the patient's anatomy to be examined in the imaging volume of the MRI apparatus. Such an MRI apparatus typically comprises a primary magnet for supplying a constant magnetic field (B
0
) which, by convention, is along the z-axis and is substantially homogeneous over the imaging volume and secondary magnets that can provide linear magnetic field gradients along each of three principal Cartesian axes in space (generally x, y, and z, or x
1
, x
2
and x
3
, respectively). A magnetic field gradient (&Dgr;B
0
/&Dgr;x
i
) refers to the variation of the field along the direction parallel to B
0
with respect to each of the three principal Cartesian axes, x
i
. The apparatus also comprises one or more RF (radio frequency) coils which provide excitation and detection of the MRI signal.
The use of the MRI process with patients who have implanted medical assist devices; such as cardiac assist devices or implanted insulin pumps; often presents problems. As is known to those skilled in the art, implantable devices (such as implantable pulse generators (IPGs) and cardioverter/defibrillator/pacemakers (CDPs)) are sensitive to a variety of forms of electromagnetic interference (EMI) because these enumerated devices include sensing and logic systems that respond to low-level electrical signals emanating from the monitored tissue region of the patient. Since the sensing systems and conductive elements of these implantable devices are responsive to changes in local electromagnetic fields, the implanted devices are vulnerable to external sources of severe electromagnetic noise, and in particular, to electromagnetic fields emitted during the magnetic resonance imaging (MRI) procedure. Thus, patients with implantable devices are generally advised not to undergo magnetic resonance imaging (MRI) procedures.
To more appreciate the problem, the use of implantable cardiac assist devices during a MRI process will be briefly discussed.
The human heart may suffer from two classes of rhythmic disorders or arrhythmias: bradycardia and tachyarrhythmia. Bradycardia occurs when the heart beats too slowly, and may be treated by a common implantable pacemaker delivering low voltage (about 3 V) pacing pulses.
The common implantable pacemaker is usually contained within a hermetically sealed enclosure, in order to protect the operational components of the device from the harsh environment of the body, as well as to protect the body from the device.
The common implantable pacemaker operates in conjunction with one or more electrically conductive leads, adapted to conduct electrical stimulating pulses to sites within the patient's heart, and to communicate sensed signals from those sites back to the implanted device.
Furthermore, the common implantable pacemaker typically has a metal case and a connector block mounted to the metal case that includes receptacles for leads which may be used for electrical stimulation or which may be used for sensing of physiological signals. The battery and the circuitry associated with the common implantable pacemaker are hermetically sealed within the case. Electrical interfaces are employed to connect the leads outside the metal case with the medical device circuitry and the battery inside the metal case.
Electrical interfaces serve the purpose of providing an electrical circuit path extending from the interior of a hermetically sealed metal case to an external point outside the case while maintaining the hermetic seal of the case. A conductive path is provided through the interface by a conductive pin that is electrically insulated from the case itself.
Such interfaces typically include a ferrule that permits attachment of the interface to the case, the conductive pin, and a hermetic glass or ceramic seal that supports the pin within the ferrule and isolates the pin from the metal case.
A common implantable pacemaker can, under some circumstances, be susceptible to electrical interference such that the desired functionality of the pacemaker is impaired. For example, common implantable pacemaker requires protection against electrical interference from electromagnetic interference (EMI), defibrillation pulses, electrostatic discharge, or other generally large voltages or currents generated by other devices external to the medical device. As noted above, more recently, it has become crucial that cardiac assist systems be protected from magnetic-resonance imaging sources.
Such electrical interference can damage the circuitry of the cardiac assist systems or cause interference in the proper operation or functionality of the cardiac assist systems. For example, damage may occur due to high voltages or excessive currents introduced into the cardiac assist system.
Therefore, it is required that such voltages and currents be limited at the input of such cardiac assist systems, e.g., at the interface. Protection from such voltages and currents has typically been provided at the input of a cardiac assist system by the use of one or more zener diodes and one or more filter capacitors.
For example, one or more zener diodes may be connected between the circuitry to be protected, e.g., pacemaker circuitry, and the metal case of the medical device in a manner which grounds voltage surges and current surges through the diode(s). Such zener diodes and capacitors used for such applications may be in the form of discrete components mounted relative to circuitry at the input of a connector block where various leads are connected to the implantable medical device, e.g., at the interfaces for such leads.
However, such protection, provided by zener diodes and capacitors placed at the input of the medical device, increases the congestion of the medical device circuits, at least one zener diode and one capacitor per input/output connection or interface. This is contrary to the desire for increased miniaturization of implantable medical devices.
Further, when such protection is provided, interconnect wire length for connecting such protection circuitry and pins of the interfaces to the medical device circuitry that performs desired functions for the medical device tends to be undesirably long. The excessive wire length may lead to signal loss and undesirable inductive effects. The wire length can also act as an antenna that conducts undesirable electrical interference signals to sensitive CMOS circuits within the medical device to be protected.
Additionally, the radio frequency (RF) energy that is inductively coupled into the wire causes intense heating along the length of the wire, and at the electrodes that are attached to the heart wall. This heating may be sufficient to ablate the interior surface of the blood vessel through which the wire lead is placed, and may be sufficient to cause scarring at the point where the electrodes contact the heart. A further result of this ablation and scarring is that the sensitive node that the electrode is intended to pace with low voltage signals becomes desensitized, so that pacing the patient's heart becomes less reliable, and in some cases fails altogether.
Another conventional solution for protecting the implantable medical device from electromagnetic interference is illustrated in FIG.
1
.
FIG. 1
is a schematic view of an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electromagnetic interference immune tissue invasive system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electromagnetic interference immune tissue invasive system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electromagnetic interference immune tissue invasive system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.