Device and method for noninvasive continuous determination...

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S300000, C600S301000, C600S323000, C600S324000, C600S504000, C600S507000

Reexamination Certificate

active

06719705

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to noninvasive methods of quantitatively determining various physiologic parameters relating to cardiovascular and respiratory function. More particularly, the invention relates to a method and apparatus for continuous, noninvasive determination of: arterial blood pressure, venous pressure, arterial oxygen saturation, venous oxygen saturation, arterial pulse wave velocity, aortic pulse wave velocity, aortic pulse flow velocity, cardiac stroke volume, cardiac output, heart rate, and respiratory rate.
BACKGROUND OF THE INVENTION
Critically ill and seriously injured patients require constant care and attention. Doctors, nurses, and hospital technicians need a continuous flow of information about the many patients under their care. Heart rate and blood pressure measurements are two primary vital signs that indicate the health of patients under their care. When these two common indices of wellness fall below normal readings, a patient is usually in distress and requires immediate attention.
Dangerous conditions brought about by a cardio-vascular or pulmonary disease, severe trauma, or drug abuse may bring about a failure of the lungs and heart to supply the bloodstream with life-giving oxygen. Such a fatal deficiency can be detected by continually gauging the amount of hemoglobin in the bloodstream that is carrying oxygen. This third vital sign, which manifests oxygen saturation of the blood, is especially critical because a rapid decline in oxygen in the bloodstream is associated with increased risk of patient mortality.
It is well known that blood pressure can be directly measured by placing a fluid-filled catheter directly into the vessel and coupling this to an electro-mechanical transducer. This is the most accurate means, but has all the disadvantages of invasive measurement, including pain on insertion, risk of infection or disease transmission, risk of bleeding or thrombosis, and great expense. A further disadvantage is the creation of toxic medical waste (needle, gloves, skin dressing, etc).
Blood pressure measurement can also be measured indirectly using an occlusive cuff (with either auscultation or oscillometry to make the determination). This is the most common means of blood pressure measurement. Illustrative are U.S. Pat. Nos. 5,582,179, 5,048,533, 5,152,296 and 4,793,360.
A further occlusive cuff apparatus is disclosed in U.S. Pat. No. 5,766,130. According to the invention, the apparatus includes multiple “pressurized pneumatic cuffs” that are used to “plot blood pressure and/or volumetric blood flow wave forms from a plurality of separate digits and/or extremities of a patient so that circulatory parameters may be measured rapidly and recorded from a great number of the patient's digits or limbs”.
Although commonly employed, the occlusive cuff also has numerous disadvantages, which include discomfort, intermittent readings, and poor reliability.
An additional means of determining blood pressure is through an assessment of “pulse wave velocity”. Several prior art references disclose methods and/or apparatus employing such means. Illustrative is U.S. Pat. No. 5,649,543.
There are also several prior art references that disclose methods and/or apparatus for determining blood pressure through a “pulse wave amplitude” assessment Illustrative are U.S. Pat. Nos. 4,735,213, 4,872,461, 4,793,360, and 5,385,149.
Although most of the noted noninvasive blood pressure methods and apparatus, particularly the occlusive cuff, have been employed for many years by health care personnel, the conventional methods and apparatus have one major, common drawback—the need for separate calibration.
Accordingly, there is a need for noninvasive methods and devices for determining various physiological characteristics, such as central venous pressure and cardiac output, without separate calibration. There is also a similar need for noninvasive methods and devices for determining various blood parameters including pulse amplitude, pulse delay, pulse velocity, pulse contour, flow velocity and flow delay.
As will be appreciated by one having ordinary skill in the art, the present invention satisfies these and other needs.
SUMMARY OF THE INVENTION
The present invention includes a device for the noninvasive monitoring of a physiologic characteristic of a patient's blood. In one embodiment, the device comprises a tissue probe having a radiation emitter and a radiation detector configured to receive the radiation after absorbance through the patient's blood; a position sensor for determining the relative height of the probe compared to a level corresponding to the patient's heart; and a controller for computing the physiologic characteristic of the patient's blood based on the absorbance of the first wavelength of radiation and the relative height of the probe. The radiation emitters of the invention can utilize a single wavelength or a plurality of discrete wavelengths and may include visible light, infrared light, and ultraviolet light. The probes are adapted for use with hands, fingers, feet, toes, ears, earlobes, nares, lips, tongue and the like. Additional radiation emitters and detectors may also be used. Preferably, the probe further comprises ECG leads.
An alternative embodiment of the device of the invention comprises a tissue probe and controller in conjunction with a movement generator for inducing a position change of the probe with respect to a level corresponding to the patient's heart. Preferably, the movement generator induces a known position change of the probe and moves the probe to positions above and below a level corresponding to the patient's heart.
The invention also comprises method for determining a physiological characteristic of a patient's blood noninvasively. In one embodiment, absorbance characteristics of the blood are measured at varying positions relatively to the level of the patient's heart. By comparing blood parameters such as pulse amplitude, pulse velocity, pulse delay, pulse contour, flow velocity and flow delay to hydrostatic pressure differences induced by the position changes, characteristics such as arterial and central venous blood pressure and cardiac output can be determined. Alternatively, two probes are used to compute pulse delays between coupled tissues or opposing tissues.
The subject invention relates novel methods for noninvasive determination of physiologic characteristics. The first new and unique method and device utilizes changes in hydrostatic pressure induced by positional changes to facilitate measurements. A second new and unique method and device for noninvasive determination of cardiac output by measuring delays in pulse arrival times in coupled organs or members on opposite sides of the body is also described. The two methods are such that they can advantageously be used together.
By varying the hydrostatic pressure in an extremity, one can not only perform self-calibration for a blood pressure determination, but also change the pulse wave velocity and pulse propagation delay with respect to the opposite extremity. With this information, pulse wave velocity, and consequently flow wave velocity at the aortic root can be determined.
Similar techniques of varying hydrostatic pressure can be used to assess venous pressure and saturation. The technique of repetitious determinations made while altering position or other variables allows a multitude of additional analyses to be made. The determinations can be made intermittently or continuously.
Further objects of the invention are exemplified by the following potential applications:
(a1). A patient is anesthetized for a surgical procedure. Probes are attached to the index fingers of each hand, and a movement generator is placed on one arm. A complete set of vital signs and physiologic characteristics is generated continuously, including: arterial blood pressure, venous pressure, arterial oxygen saturation, venous oxygen saturation, arterial pulse wave velocity, aortic pulse wave veloci

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for noninvasive continuous determination... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for noninvasive continuous determination..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for noninvasive continuous determination... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197988

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.