Device and method for wavelength dependent light outcoupling

Radiant energy – Radiant energy generation and sources – With radiation modifying member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C355S044000, C355S045000, C355S067000

Reexamination Certificate

active

06768127

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an exposure apparatus comprising a lamp and a condensor device, in particular for wavelength-dependent light outcoupling, whereby a first, wavelength-dependent mirror layer is located with in the exposure beam path to divide the beam path into a first, UV portion for exposure, and into a second, primarily visible and/or IR special portion, whereby a second mirror is located in the beam path of the second spectral portion that reflects the second spectral portion back to the first mirror layer.
Such an exposure apparatus for photocopiers is made known in U.S. Pat. No. 4,095,881. The light from a halogen lamp strikes a curved reflector, from which point a parallel bundle of rays is partially reflected by an inference filter located in front of the lamp in the beam path, and its IR portion is allowed to pass through. The IR portion is reflected back into the lamp via a mirror, in order to warm it up and thereby save electrical energy to operate the lamp.
An exposure method is made know in JP-A-3022518 in which a wavelength selective mirror layer that divides the beam path into a spectral portion used for exposure and into a further spectral portion is penetrated by radiation within the exposure beam path of the lamp. Under normal circumstances, the further spectral portion is focussed on the end of a bundle of light guides that is connected to a device for controlling the correct focussing. The disadvantage of this method is the fact that the entire spectral portion not used for exposure causes the instrument parts radiated by it to heat up considerably. This can lead to the maladjustment or even destruction of the instrument parts.
The object of the invention is to present an exposure apparatus and a method with which exposure quality can be optimized using simple means.
This object is attained by means of the invention by the fact that a viewing screen is located in the beam path of the light portion of the second spectral portion reflected on the first mirror layer before the second pass through this first mirror layer, and by the fact that imaging optics are located between the viewing screen and the first mirror layer to image the lamp on the viewing screen.
Light is outcoupled in wavelength-dependent fashion using the first, preferably wavelength-dependent mirror layer. The light emitted from the lamp is thereby divided into a UV portion used for exposure, and into an unused, visible and IR spectral portion. The used, UV spectral portion is diverted in the direction toward the lens, while the visible and the IR portion pass through the mirror layer. By optimizing the mirror layer, reflection coefficients of nearly R=100% and transmission coefficients of T=90% can be achieved. By employing a plurality of such units, a suppression of greater than 1:1000 can be achieved with a utilized light efficiency of approximately 98%. Due to light outcoupling, the UV portion is practically all that reaches the offset printing plate for exposure. The energy in the undesired spectral range that is received is very low. No unnecessary heating up—or the negative consequences related therewith—takes place.
The first visible and IR spectral portion which is not used for exposure and passes through the first, preferably wavelength-dependent mirror layer is reflected on the second mirror located, in particular, perpendicular to the propagation of the unused spectral portion, back in the direction of the first mirror layer. Exacty like the first pass, this second passage through the first, preferably wavelength-dependent mirror layer is not complete, either, because residual reflection remains. A portion, A=T*(1-T), is reflected on the mirror layer and diverted in a direction away from the object to a viewing screen, on which an image of the lamp is then created by means of imaging optics. This image is used to adjust the lamp. This allows for a much more effective positioning of the lamp than could be achieved using an unadjusted installation, due to the mechanical tolerances of lamps. The result is a much more accurate illumination of the object to be illuminated. Appropriate reference marks can be applied on the viewing screen to simplify the adjustment process.
The largest share of the second spectral portion—which is not used for exposure—passes through the mirror layer back in the direction of the lamp, i.e., it does not reach the offset printing plate. The radiant energy can be absorbed here by lamp cooling elements already in place. No further elements are needed to absorb the portion not used for exposure. As a result, the entire apparatus can be designed to be more compact and, in particular, more cost-effective.
An image of the lamp, the lamp filament, or the lamp electrodes is created on the viewing screen. The exposure apparatus can now be adjusted effectively using this image. The viewing screen preferable comprises a ground-glass screen, on which a mirror-inverted image of the lamp is projected. This simple exemplary embodiment of the viewing screen is cost-effective to manufacture and relates the position of the light source as an image with sufficient accuracy.
Imaging optics for imaging the lamp on the viewing screen are located between the viewing screen and the first, preferably wavelength-dependent mirror layer so that an image of the lamp can be displayed on the viewing screen. These imaging optics comprise a lens system, for example. The advantage of a lens system is the high light intensity and good accuracy. By arranging the lenses appropriately, it is possible to create an enlarged representation of the lamp, which is conducive to a rapid and simplified adjustment of the exposure apparatus. A simple aperture plate can be used in order to reduce assembly. According to the principle of a “hidden camera”, this produces a mirror-inverted image of the lamp on the viewing screen, which is designed as a ground-glass screen, for instance.
According to a further advantageous exemplary embodiment of the invention, the imaging and reflecting functions of the imaging optics and the mirror can be combined in one component if the second mirror is designed curved in shape. This design saves costs, because a complicated and cost-intensive lens system between the mirror wall and viewing screen can be eliminated.
The exposure apparatus can be further improved if a reflector is located in the beam path behind the lamp. It creates a reversed image of the lamp in or, preferably, next to the lamp. The light yield can be nearly doubled as a result. Additionally, adjustment can be greatly simplified, because it can now be carried out with the images of the lamp and the lamp image positioned side-by-side on the viewing screen.
The arrangement of the individual components is extremely important to achieve a particulary space-saving and efficient design of the apparatus. For example, a condenser and the semipermeable mirror layer are located in the beam path behind the lamp in the ray direction. The semipermeable mirror layer divides the light into a first, preferably, UV portion used for exposure, and into a second spectral portion, preferably the visible and IR portion. A mirror is located in linear succession after the second spectral portion, which mirror reflects the second spectral portion back in the direction toward the semipermeable mirror layer, which is situated so as to divert part of the second spectral portion to the viewing screen. In this fashion, all functions are realized in a very compact design. The light reflected back into the lamp and not used for exposure is absorbed there by cooling elements. Parts of this second spectral portion serve to adjust the lamp with the aid of the viewing screen. The fact that only the used, preferably UV portion reaches the offset printing plate is particularly advantageous.
The object of the method is attained using an exposure metohod for wavelength dependent light outcoupling according to the invention, in which at least a first, wavelength-dependent mirror lay

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for wavelength dependent light outcoupling does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for wavelength dependent light outcoupling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for wavelength dependent light outcoupling will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197614

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.