Linearity and dynamic range for complementary metal oxide...

Radiant energy – Photocells; circuits and apparatus – Photocell controlled circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06730897

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to complementary metal oxide semiconductor (CMOS) active pixel sensors (APS) and more particularly to an improved pixel sensor that has increased linearity as a result of additional voltage-independent capacitance.
BACKGROUND OF THE INVENTION
CMOS APS are solid state imagers where each pixel contains a photo-sensing means, reset means, charge conversion means, select means, and all or part of an amplifier. APS devices have the advantages of single supply operation, lower power consumption, x-y addressability, image windowing, and the ability to effectively integrate signal processing electronics on-chip, when compared to CCD sensors.
In order to build high resolution, small pixel APS devices for digital cameras it is necessary to use sub-&mgr;m CMOS processes in order to minimize the area of the pixel allocated the active components in each pixel. In order to achieve good signal to noise performance it is important to hold as many photoelectrons as possible within the pixel. In typical APS pixel architectures the integrated photoelectrons are converted to a voltage in each pixel. This charge to voltage conversion region is typically a diode, either the photodiode or an isolated floating diffusion. It is the parasitic capacitance of the charge to voltage conversion region that determines the maximum number of electrons that can be contained within the region. Sub-&mgr;m CMOS processes are typically operated at low supply voltages, 3.3V and below, hence the reset level and the voltage swing that can be accommodated in the charge to voltage conversion region is limited by the supply voltage. Since the supply voltage is low, the signal swing on the charge to voltage conversion region is a large compared to the reset level. Since the capacitance of the diode that forms the charge to voltage conversion region is a function of the voltage across the diode, and the signal swing is large compared to the total voltage across the diode at reset, the capacitance of the diode changes substantially from the reset level, (or dark signal), to the saturation level, (or bright signal). In typical APS pixel architectures the capacitance at reset is smaller than the capacitance at saturation. This produces a non-linear transfer function. It is very important to have a linear transfer function for color image sensors. Non-linearity in the sensor response can degrade the color fidelity of the image. Response linearity has been optimized for CCD image sensors. APS are much less linear that CCD's.
In addition to poor linearity, APS sensors can also suffer from low charge capacity as a result of the reduced supply voltages in sub-&mgr;m CMOS processes. For the same pixel size, CMOS APS sensors have lower charge capacity compared to CCD image sensors due to the larger supply and clock voltages used on CCD image sensors.
One approach to providing an image sensor with the linearity of a CCD and the advantages of an APS device is to reduce the effect of the voltage dependent capacitance of the charge to voltage conversion region of an APS device. This invention does so by providing a voltage independent capacitor in parallel with the diode capacitance of the charge to voltage conversion region. This can also be used to improve the charge capacity of an APS device.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a structure and method for a complementary metal oxide semiconductor active pixel sensor device having a photodetector, a charge to voltage conversion node, an amplifier input connected to the charge to voltage conversion node, and a voltage-independent capacitance connected in parallel with the charge to voltage conversion node. The voltage-independent capacitance provides a capacitance that is not a function of charge placed on the charge to voltage conversion node. The voltage-independent capacitance can be an electrode-electrode capacitor, or the input capacitance of an amplifier.
The invention also comprises a method of manufacturing a complementary metal oxide semiconductor active pixel sensor device which includes a photodetector, a charge to voltage conversion node, an amplifier input connected to the charge to voltage conversion node, and a voltage-independent capacitance connected in parallel with the charge to voltage conversion node. The voltage-independent capacitance provides a capacitance that is not a function of charge placed on the charge to voltage conversion node. The voltage-independent capacitance can be an electrode-electrode capacitor, or the input capacitance of an amplifier.


REFERENCES:
patent: 5614744 (1997-03-01), Merrill
patent: 6344877 (2002-02-01), Gowda et al.
patent: 6384394 (2002-05-01), Afghahi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Linearity and dynamic range for complementary metal oxide... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Linearity and dynamic range for complementary metal oxide..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Linearity and dynamic range for complementary metal oxide... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197197

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.