Radiation image read-out apparatus

Radiant energy – Source with recording detector – Using a stimulable phosphor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S585000

Reexamination Certificate

active

06710365

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a radiation image read-out apparatus, and more particularly to a radiation image read-out apparatus for reading out a radiation image stored on a stimulable phosphor sheet by the use of a line sensor.
2. Description of the Related Art
When certain kinds of phosphor are exposed to a radiation, they store a part of energy of the radiation. Then when the phosphor which has been exposed to the radiation is exposed to stimulating rays such as visible light or a laser beam, light is emitted from the phosphor in proportion to the stored energy of the radiation. A phosphor exhibiting such properties is generally referred to as “a stimulable phosphor”. In this specification, the light emitted from the stimulable phosphor upon stimulation thereof will be referred to as “stimulated emission”. There has been known a radiation image read-out apparatus in which a stimulating light beam such as a laser beam is caused to scan a stimulable phosphor sheet (a sheet provided with a layer of the stimulable phosphor) which has been exposed to a radiation passing through an object such as a human body to have a radiation image of the object stored on the stimulable phosphor sheet, the stimulated emission emitted from the stimulable phosphor sheet pixel by pixel is photoelectrically detected, thereby obtaining an image signal (a radiation image signal), and then the stimulable phosphor sheet is exposed to erasing light after the image signal is obtained from the stimulable phosphor sheet so that the residual energy of the radiation is fully released from the stimulable phosphor sheet.
The radiation image signal thus obtained is subjected to image processing such as gradation processing and/or frequency processing and a radiation image of the object is reproduced as a visible image for diagnosis on the basis of the processed radiation image signal on a recording medium such as a photographic film or a display such as a fine CRT. When the stimulable phosphor sheet is exposed to erasing light, the residual energy of the radiation is fully released from the stimulable phosphor sheet and the stimulable phosphor sheet comes to be able to store a radiation image again, whereby the stimulable phosphor sheet can be repeatedly used.
In the radiation image read-out apparatus, it has been proposed to use a line light source which projects a line beam onto the stimulable phosphor sheet as a stimulating light source and to use a line sensor having an array of photoelectric convertor elements as a means for photoelectrically reading out the stimulated emission. The line beam is moved relative to the stimulable phosphor sheet and the line sensor in the direction perpendicular to the longitudinal direction of the line beam by a scanning means. By the use of a line beam and a line sensor, the reading time is shortened, the overall size of the apparatus can be reduced and the cost can be reduced. See, for instance, Japanese Unexamined Patent Publication Nos. 60(1985)-111568, 60(1985)-236354, and 1(1989)-101540.
In the conventional radiation image read-out apparatus using such a line sensor, there has been proposed a system in which is employed a refractive index profile type lens array such as a SELFOC® lens array, a rod lens array or the like, which is formed by an imaging system where the object plane and the image plane are in one to one correspondence, in order to increase convergence of the stimulated emission on the line sensor. The refractive index profile type lens array comprises a plurality of refractive index profile type lenses which are arranged according to the arrangement of the photoelectric convertor elements in the line sensor.
For example, when the photoelectric convertor elements are arranged as shown in
FIG. 2
in the line sensor, the refractive index profile type lenses in the refractive index profile type lens array are arranged as shown in FIG.
3
.
Use of such a refractive index profile type lens array has involved the following problem. That is, in the refractive index profile type lens array, there are formed non-aperture portions, where no lens exists, between lenses. The convergence of the stimulated emission is naturally lower in areas corresponding to the non-aperture portions, which results in a periodic pattern like stripes which extend in the direction perpendicular to the longitudinal direction of the line sensor and appear in a reproduced image at the pitches of the non-aperture portions.
SUMMARY OF THE INVENTION
In view of the foregoing observations and description, the primary object of the present invention is to provide a radiation image read-out apparatus in which the periodic pattern like stripes due to the non-aperture portions in the refractive index profile type lens array is suppressed.
In accordance with the present invention, there is provided a radiation image read-out apparatus comprising a line stimulating light beam source which projects a line stimulating light beam onto a stimulable phosphor sheet storing thereon radiation image information, a line sensor which comprises a plurality of photoelectric convertor elements arranged in the longitudinal direction of the line irradiated portion to receive stimulated emission emitted from the irradiated portion of the stimulable phosphor sheet or the back side of the sheet opposed to the line irradiated portion and convert the amount of stimulated emission to an electric signal, a light collector means which is disposed between the stimulable phosphor sheet and the line sensor and includes a refractive index profile type lens array which converges the stimulated emission onto the respective photoelectric convertor elements of the line sensor, a scanning means which moves the stimulating light beam source and the line sensor relatively to the stimulable phosphor sheet in a direction different form said longitudinal direction, and an image signal read-out means which reads out the output of the line sensor in sequence in the respective positions in which the stimulating light beam and the line sensor are moved by the scanning means and reads out an image signal representing the radiation image information stored in the stimulable phosphor sheet, wherein the improvement comprises that
the photoelectric convertor elements of the line sensor and the refractive index profile type lenses of the refractive index profile type lens array are arranged at pitches such that the frequency band of the periodic pattern generated due to the pitches of the refractive index profile type lenses in said refractive index profile type lens array are higher than the frequency band of a radiation image information reproduced on the basis of the image signal.
The frequency band of a radiation image information reproduced on the basis of the image signal varies by the kind of the radiation image. In the case of a normal radiation image, the frequency band is 3 to 5 cycle/mm and in the case of a radiation image where a high sharpness is required, the frequency band is 5 to 10 cycle/mm. In this invention, the pitches of the photoelectric convertor elements of the line sensor and the refractive index profile type lenses of the refractive index profile type lens array are set to be higher than the frequency band.
As the line stimulating light beam source, a fluorescent lamp, a cold cathode tube, an LED array and the like can be employed. The line stimulating light beam source itself need not be linear so long as the stimulating light is projected onto the stimulable phosphor sheet in the form of a line beam. That is, the line stimulating light beam source may be provided with an optical system which shapes light emitted from the light source into a line beam. Further, a broad area laser may be employed as the linear stimulating light beam source. The stimulating light beam may be continuously emitted from the light beam source or may be emitted therefrom in a pulse-like fashion. From the viewpoint of reduction in noise, preferably the line stimulating light beam is in the fo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiation image read-out apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiation image read-out apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation image read-out apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3196421

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.