Solar propulsion assist

Aeronautics and astronautics – Spacecraft – With payload accommodation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C136S292000, C126S689000, C060S224000, C244S062000, C244S172200

Reexamination Certificate

active

06698693

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to method and apparatus for solar-boost assist and solar-sail assist by a mini-optics light concentrator system utilizing a dynamic ensemble of mini-mirrors. In the boost phase of a rocket ship launch, the system focusses solar energy into the rocket chamber to raise the temperature of the propellant and increase the impulse. In the mid-course phase, the system focusses solar energy onto the rocket's solar sail to increase the thrust. In both cases, the system reduces the weight of the rocket by providing a weightless source of thrust.
2. Description of the Prior Art
The prior art is limited to “direct observation displays” wherein images are viewed directly. None of the prior art deals in any way with rocket ship propulsion. There are many prior art patents that deal with twisting balls (gyricon) displays or separable balls displays. Electric or magnetic fields are used to orient or move polarized or charged bi-colored (gyricon) balls in the prior art. Since mirrors are not incorporated in the prior art, none of them utilizes the balls to optically reflect or focus light as in our invention. These verities are evident from an examination of the prior art. A large representative sample of the prior art will now be enumerated and described. This together with the references contained therein constitutes a comprehensive compendium of the prior art.
U.S. Pat. No. 5,754,332 issued to J. M. Crowley on May 19,1998 deals with gyricon bi-colored balls whose reflectance is comparable with white paper. The object is to produce a monolayer gyricon direct observation ball display.
U.S. Pat. No. 5,808,783 issued to J. M. Crowley on Sep. 15, 1998 deals with gyricon bi-colored balls “having superior reflectance characteristics comparing favorably with those of white paper.” Again the objective is a direct observation ball display application.
U.S. Pat. No. 5,914,805 issued to J. M. Crowley on Jun. 22, 1999 utilizes two sets of gyricon bi-colored balls “having superior reflectance characteristics comparing favorably with those of white paper” for direct observation ball display purposes.
U.S. Pat. No. 6,055,091 issued to N. K. Sheridon and J. M. Crowley on Apr. 25, 2000 utilizes gyricon bi-colored cylinders. Again the objective is a direct observation display application.
U.S. Pat. No. 6,072,621 issued to E. Kishi, T. Yagi and T. Ikeda on Jun. 6, 2000 utilizes sets of different mono-colored polarized balls which are separable for a direct observation ball display device.
U.S. Pat. No. 6,097,531 issued to N. K. Sheridon on Aug. 1, 2000 teaches a method for making magnetized elements (balls or cylinders) for a gyricon direct observation display.
U.S. Pat. No. 6,120,588 issued to J. M. Jacobson on Sep. 19, 2000 describes a direct observation ball display device which uses mono-colored elements that are electronically addressable to change the pattern of the ball display.
U.S. Pat. No. 6,174,153 issued to N. K. Sheridon on Jan. 16, 2001 teaches apparatus for the purpose of a gyricon direct observation ball display.
U.S. Pat. No. 6,192,890 B1 issued to D. H. Levy and J.-P. F. Cherry on Feb. 27, 2001 is for a changeable tattoo direct observation ball display using magnetic or electric fields to manipulate particles in the ball display.
U.S. Pat. No. 6,211,998 B1 issued to N. K. Sheridon on Apr. 3, 2001 teaches a method of addressing a direct observation ball display by a combination of magnetic and electric means. U.S. Pat. No. 6,262,707 B1 issued to N. K. Sheridon on Jul. 17, 2001 has a similar teaching for a gyricon ball display.
A large number of prior art devices have been described, all of which are directed at addressing and changing the pattern of a direct observation ball display device. While there are other such prior art teachings, none of them teaches or anticipates our invention.
DEFINITIONS
“Bipolar” refers herein to either a magnetic assemblage with the two poles north and south, or an electric system with + and− charges separated as in an electret.
“Compaction” refers to increasing the density of a collection (ensemble) of objects by geometrical arrangement or other means.
“Collimated” refers herein to an approximately parallel beam of light.
“Elastomer” is a material such as synthetic rubber or plastic, which at ordinary temperatures can be stretched substantially under low stress, and upon immediate release of the stress, will return with force to approximately its original length.
“Electret” refers to a solid dielectric possessing persistent electric polarization, by virtue of a long time constant for decay of charge separation.
“Electrophoresis or Electrophoretic” is an electrochemical process in which colloidal particles or macromolecules with a net electric charge migrate in a solution under the influence of an electric current. It is also known as cataphoresis.
“Focussing planar mirror” is a thin almost planar mirror constructed with stepped varying angles so as to have the optical properties of a much thicker concave (or convex) mirror. It can heuristically be thought of somewhat as the projection of thin equi-angular segments of small portions of a thick mirror upon a planar surface. It is a focusing planar reflecting surface much like a planar Fresnel lens is a focusing transmitting surface. The dynamic-focussing property of an ensemble of tiny elements which make up the focussing planar mirror are an essential feature of the instant invention.
“Immiscible” herein refers to two fluids which are incapable of mixing.
“Packing fraction” herein refers to the fraction of an available volume or area occupied by a collection (ensemble) of objects.
“Pixel” refers to the smallest element of an array of elements that make up an image.
“Polar gradient” as used herein relates to magnetic optical elements that are controlled in the non-gyricon mode such as in the magnetic field gradient mode.
“Monopolar” as used herein denotes mono-charged optical elements that are controlled in the non-gyricon mode such as the electrophoretic mode.
“Rayleigh limit” relates to the optical limit of resolution which can be used to determine the smallest size of the elements that constitute a mini-mirror. Lord Rayleigh discovered this limit from a study of the appearance of the diffraction patterns of closely spaced point sources.
“Spin glass” refers to a wide variety of materials which contain interacting atomic magnetic moments. They possess a form of disorder, in which the magnetic susceptability undergoes an abrupt change at what is called the freezing temperature for the spin system.
“Thermoplastic” refers to materials with a molecular structure that will soften when heated and harden when cooled. This includes materials such as vinyls, nylons, elastomers, fuorocarbons, polyethylenes, styrene, acrylics, cellulosics, etc.
“Translucent” as used herein refers to materials that pass or transmit light of only certain wavelengths so that the transmitted light is colored.
SUMMARY OF THE INVENTION
There are many aspects and applications of this invention, which provides techniques applicable individually or in combination for solar-boost assist and solar-sail assist by a mini-optics light concentrator system utilizing a dynamic ensemble of mini-mirrors. Primarily this invention deals with the broad general concept of method and apparatus for rocket ship assist in the boost and/or in the mid-course phases. In both cases, the system reduces the weight of the rocket by providing a weightless source of thrust. As will be described in detail, these objectives may be accomplished by any of a number of ways separately or in combination, as taught by our invention
It is a general object of this invention to provide solar-boost assist and solar-sail assist by a mini-optics light concentrator system utilizing a dynamic ensemble of mini-mirrors.
Another objective is to provide rocket ship solar-boost assist by focussing solar energy into the rocket chamber to raise the temperature of the propellant and increase the i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solar propulsion assist does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solar propulsion assist, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solar propulsion assist will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3195544

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.