Resistive heating element and production method

Electric heating – Heating devices – With heating unit structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S502000, C252S504000

Reexamination Certificate

active

06730892

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a resistive heating element and a production method.
2. Description of the Related Art
In the past, processed metal wire products such as tungsten wire and nichrome wire, machined products of carbon materials such as anisotropic carbon materials and glassy carbon materials, and metal compounds such as silicon carbide have been, primarily, used as resistive heating elements. Among these, processed metal wire products were mainly used as heating elements for the heaters of consumer appliances, while carbon and metal compounds were mainly used for industrial ovens and so forth.
Among these conventional heating element materials, carbon, different from metal wire and so forth, has advantageous characteristics such as a satisfactory heating rate, a satisfactory heating efficiency and a satisfactory far infrared ray generation efficiency. However, as conventional carbon heating elements are fabricated by machining them from large plates or blocks, the production process is not only complex and expensive, but it is also difficult to fabricate narrow or thin products. In addition, as products are machined from blocks and so forth having a specific resistance value within a certain standard range, there is the problem that changing the shape is the only way to control the heating value.
WO 98/59526 proposes a production method of a carbon-based heating element comprising mixing graphite powder and an electrical conductivity inhibitor of a metal or metalloid compound such as boron nitride or silicon carbide with a carbon-containing resin such as chlorinated vinyl chloride resin, and carbonizing the mixture in an inert gas such as nitrogen gas.
The carbon-based heating element obtained by this method has superior characteristics, as a carbon-based heating element, in that it allows a specific resistance to be controlled to an arbitrary value by changing the ratio of the carbon serving as a good electrical conductor to the metal or metalloid compound serving as an electrical conductivity inhibitor, and can be made into any arbitrary shape by shaping to the desired shape before carbonizing.
In the above carbon heating element, the generation efficiency of far infrared rays can be enhanced if it is possible to maintain the temperature of the heating element at a comparatively low temperature. In order to accomplish this, it is possible to increase the electrical resistance value by decreasing the cross-sectional diameter of the heating element, but this has limitations in terms of maintaining strength. It is also possible to increase the specific resistance value by increasing the blending ratio of metal or metalloid compound such as boron nitride, but this again results in the problem of a decrease in strength.
SUMMARY OF THE INVENTION
Thus, an object of the present invention is to provide a resistive heating element capable of easily realizing various shapes, such as thin plates, narrow rods or narrow cylinders, and imparting a high specific resistance value while maintaining a sufficient strength.
According to the present invention, a resistive heating element is provided that comprises a framework consisting essentially of silicon oxide, and crystalline carbon that fills the space within said framework.
This resistive heating element preferably additionally contains a metal or metalloid compounds.
According to the present invention, a heating device is also provided that is provided with a sealed container, the heating resistive element described above placed inside said sealed container, and inert gas filling said sealed container.
This resistive heating element is produced by mixing carbon powder with silicone rubber and shaping the mixture to a desired shape followed by firing.
In the mixing process, a metal or metalloid compounds are preferably additionally mixed in.
During firing, it is preferable to fire at a temperature of 300-400° C. followed by firing at a temperature of 1000-1400° C. in a non-oxidizing atmosphere.
The resistive heating element of the present invention has been confirmed to effectively solve the above problems, such as having superior generation efficiency of far infrared rays, by having a higher specific resistance value than the prior art while maintaining sufficient strength as a result of using silicon oxide for the framework and dispersing a carbon component as a good electrical conductor.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In general, as silicone rubber has a siloxane backbone in its structure, namely, as silicone rubber inherently has an —O—Si—O— backbone, which is a backbone of silicon oxide, it is possible to form a silicon oxide framework comparatively easily by firing.
Firing of a molding of a composition containing carbon and silicone rubber is carried out at a temperature of 300° C. or higher in an oxidizing atmosphere or non-oxidizing atmosphere, and preferably at a temperature of 360-400° C. in an oxidizing atmosphere and then at a temperature of 800-1400° C., and preferably a temperature of 1100-1400° C., in a non-oxidizing atmosphere.
If firing is carried out at a temperature below 300° C. in an oxidizing atmosphere, the resulting structure does not have sufficient strength due to inadequate formation of silicon oxide.
In addition, if firing is carried out at a temperature of 500° C. or higher in an oxidizing atmosphere, the carbon component serving as a good electrical conductor contained in the composition decomposes due to combustion and the fired composition becomes an insulator. Moreover, if firing is carried out at a temperature higher than 1400° C. in a non-oxidizing atmosphere, the crystal structure of the silicon carbide changes, resulting the possibility of a change in the characteristics.
Since deterioration of heating element characteristics or oxidation consumption of carbon materials may occur in the case of use at a temperature of more than about 500° C., it is preferable to put the heating element in a heat-resistant container such as a quartz tube, and to fill the container with an inert gas.
Either heat-vulcanized silicone rubber or liquid silicone rubber may be used as the silicone rubber in the present invention. These may be used alone or as a mixture of two or more types, and can be suitably selected according to the desired shape or molding method.
Any heat-vulcanized silicone rubber may be used for the heat-vulcanized silicone rubber capable of being used in the present invention as long as it is typically classified as a heat-vulcanized silicone rubber, examples of which include, but are not necessarily limited to, highly polymerized polyorganosiloxane (raw silicon rubber) mixed with a reinforcing filler such as dry silica or wet silica, an extending filler such as diatomaceous earth or quartz powder, a plasticizer having a comparatively low molecular weight such as polyorganosiloxane, or other additives.
Specific examples of heat-vulcanized silicone rubber that can be used include commercially available KE1551-U, KE1571-U, KE151-U, KE171-U, KE153-U, KE164-U, KE174-U, KE1261-U and KE904F-U (all of which are products of Shin-Etsu Silicone Co., Ltd.), and YE3465U, TSE2571-5U, TSE2571-7U, XE20-853U, XE20-A0784, TSE2323-5U, TSE2323-6U, TSE2323-7U, TSE2181U, TSE2183U and TSE2184U (all of which are products of GE Toshiba Silicone Co., Ltd.).
In addition, vulcanizing agents and so forth, in which a normally used organic peroxide is diluted into a paste form, may also be added depending on the molding conditions, desired shape and molding method.
Examples of vulcanizing agents include, but are not necessarily limited to, benzoylperoxide, 2,4-dichlorobenzoylperoxide, dicumylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, p-chlorobenzoylperoxide, di-t-butylperoxide and t-butylperbenzoate, and these can be suitably selected in consideration of molding conditions and so forth.
Specific examples of vulcanizing agents include commercially available C-1, C-3, C-4, C-8, C-8A, C-8B, C-10, C-15, C-16, C-17, C-23 and C-25A/C-25B (all of which

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Resistive heating element and production method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Resistive heating element and production method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resistive heating element and production method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3195450

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.