Fluidized bed granulation coating device, and fluidized bed...

Coating apparatus – Projection or spray type – Applying solid particulate material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118SDIG005, C118S303000, C118S704000, C427S213000, C427S421100

Reexamination Certificate

active

06648969

ABSTRACT:

REFERENCE TO PRIOR APPLICATION
This application is entitled to the benefit of and incorporates by reference essential subject matter disclosed in PCT Patent Application No. PCT/JP01/00818 filed on Feb. 6, 2001; Japanese Application No. 2000-288512 filed Sep. 22, 2000; and Japanese Application No. 2000-33459 filed Feb. 10, 2000.
TECHNICAL FIELD
The present invention relates to a granulation coating technique for performing a process such as granulation, coating, mixing, agitation, drying or the like of powder grains with the powder grains fluidized.
BACKGROUND ART
A fluidized bed device can perform granulation coating and drying of pharmaceuticals, food or the like within a single device and has an airtight structure, so that it is a suitable device in view of GMP. Therefore, granulation substances obtained by using this have characteristics of comparatively porous and amorphous shapes and good solubility, and so are widely utilized.
While there are many kinds of fluidized bed devices (for example, “Granulation Handbook”, edited by The Association of Powder Process Industry and Engineering, Japan, published from Ohmusha, pp. 283-348), the devices are roughly divided into a batch type and a continuous type (including a semi-continuous type and a continuous type) as methods of operation.
Presently, in most cases of performing granulation for pharmaceuticals or the like, the batch type of the device is utilized. This is because the batch type thereof is more suitable for obtaining uniform granulation substances in particle size, and is superior in view of GMP since satisfactory dry products can be obtained within the same device and no generated particles need to be transferred to another drying device.
In contrast thereto, in the continuous type as illustrated, for example, in FIG. 7.56 of page 301 and FIG. 7.57 of page 302 in the “Granulation Handbook”, raw materials are continuously injected and granulation substances classified by a principle of gas classification or the like are continuously discharged. This does not need independent steps preceding and following a main step of raw material injection, preliminary mixing, heating, cooling, discharging or the like, and therefore the processing time thereof is shortened. Control and management of the step can be also facilitated since performing stationary operations becomes possible theoretically.
However, particles of all stages of a granulation process are included in a fluidized bed obtained by using the continuous type thereof and are classified by the gas classification and are discharged, so that there are such drawbacks that classification effect is difficult to expect entirely and a particle size distribution of products to be discharged becomes large, and that products to be dried completely are not obtained since the granulation substances are discharged from a fluidizing chamber in which binder liquids are continuously sprayed, and the like.
Suggestions have been made for improving these drawbacks. For example, the device disclosed in Japanese Patent Laid-open No. 62-282629 is provided with a drying chamber adjacent to a granulation chamber, but the drying chamber has a drying effect and contributes to no improvement in a particle size distribution. Also, the devices described in FIG. 7.59 and FIG. 7.61 of page 303 of the “Granulation Handbook” are each provided with a classifier to keep particle sizes uniform. However, these devices are each suggested as a system and they themselves are not necessarily improved. Therefore, non-uniformity of particle sizes of the products obtained by the continuous type remains fatefully without being improved.
Also, since the batch type of the device intermittently performs injection and discharge, an operating property of the semi-continuous type has an intermediate property of those of the batch type and the continuous type and the semi-continuous type is a type more similar to either one regarding the relation between an injection and discharge amount and a process amount (a retention amount). Therefore, a merit and demerit of the semi-continuous type has an intermediate property of those of both types.
To compensate for such a demerit of the continuous type as described above, the device of a batch type is used in granulation, coating and the like of pharmaceuticals. However, the device has a problem of scaling up the fluidized bed device as the production thereof is scaled up.
More particularly, upsizing the device causes extensions of the time required for a batch in comparison to a small-sized device, so that the production capacity per unit time does not become proportional to a charge amount but will be below the charge amount. This is because while the amount of charge increases in proportion to a device size to the third power, an amount of fluidizing gas for maintaining an optimal fluidized condition is proportional to the device size to the second power (cross section area) and a drying speed of contents is proportional to the amount of fluidizing gas and so the time required for the drying increases in proportion to the device size.
In a large-sized device, a bulk density of the granulated particles becomes large and thereby the above-mentioned advantages of the fluidized bed granulation substances are reduced. It is thought that this is because the particles continuously repeat movements of dropping to a bottom portion thereof even during fluidization and thereby weight of the particles in being temporally deposited becomes larger than that of a small-sized device.
Even from the viewpoint of operation, the larger the device becomes, the more difficult maintaining a good fluidizing condition becomes and faulty fluidizing conditions such as channeling, bubbling, slagging or the like are likely to occur.
As described above, since it is not favorable to upsize the fluidized bed device to a more degree than a certain degree, small-sized devices with used experience are arranged in parallel and the same granulating processes is performed by at least two of the small-sized devices.
However, in this method, it is likely that there will arise problems of no improvement in a floor area for setting the devices and/or in production efficiency per worker as the production scale is increased, and of being unable to enjoy merits of mass production, and further of non-uniform quality of the granulation substances owing to unevenness of respective operating conditions between the devices. This is because there is also the fact that, in the fluidized beds, the number of operating conditions is large in comparison with other granulating methods and this method is more easily developed than other methods owing to an influence of the unevenness.
The inventors of the present invention have thus come to the idea that it is necessary to develop a device of continuous type, which is capable of improving the production capacity as well as taking advantages of a batch type device.
An object of the present invention is to provide a fluidized bed granulation coating device in which processes that are based on respective steps constituting the fluidized bed granulation coating process are arranged to be of a batch type and such respective processes arranged to be of a batch type are continuously performed.
An object of the present invention is to provide a method of fluidized bed granulation coating, in which batch type operations that are based on respective steps constituting fluidized bed granulation processes are continuously performed.
SUMMARY OF THE INVENTION
The fluidized bed granulating coating device of the present invention is characterized by: an intermediate storing section having a plurality of powder grain storing vessels circulated by a circulating means; an upper processing section including a plurality of function stations having respective functions of steps constituting a fluidized bed granulation coating process; and a lower gas supply section having gas supply stations, wherein said powder grain storing vessels of said intermediate storing section is stopped and circulated by

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluidized bed granulation coating device, and fluidized bed... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluidized bed granulation coating device, and fluidized bed..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluidized bed granulation coating device, and fluidized bed... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3178992

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.