System and method for monitoring tire location on a vehicle

Communications: electrical – Land vehicle alarms or indicators – Internal alarm or indicator responsive to a condition of the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S438000, C340S443000, C340S445000, C340S447000, C073S146500

Reexamination Certificate

active

06657540

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to automobiles and vehicle monitoring systems. More particularly, the present invention relates to a system and method to monitor the tires of the vehicle and detect a potential change of the tire attachment locations.
2. Description of the Related Art
In vehicles that use inflatable tires, it is desirous to periodically rotate the location of the tire on the vehicle so that the tires on the vehicle evenly wear. Thus, tires are rotated from front to rear, from side to side, or both to promote even wear. In such case, a tire which originally was identified to the operator as being located, for example, on the left front of the vehicle may now be located on the right rear and a system which identifies tire location would now indicate a tire problem at the wrong location to the vehicle operator. In the past, a mechanic has either kept written or computer records of the rotation of location of the tires on a vehicle so that the tires are properly rotated. There are several automated and semi-automated systems that attempt to determine the locations of the tires on the vehicle for proper rotation.
One system for indicating low tire pressure in vehicles uses a transmitter within each wheel, and the transmitter has a unique code. In that system, a central receiver is placed in the vehicle at manufacture which recognizes the codes for the respective transmitters in each wheel of the vehicle, and also a common transmitter code, in the event one of the transmitters needs to be replaced. An application specific integrated circuit (ASIC) encoder is included in each transmitter and is programmed at manufacture, in accordance with its unique code, to send its information at different intervals, to avoid clash between two or more transmitters on the vehicle. The transmitters must be powered by long-life batteries, and during vehicle operation and maintenance, when the tires are rotated, that system can be recalibrated to relearn the locations of the transmitters
The disadvantage with that system is that the technician may forget to perform the procedure or perform the procedure incorrectly so that accurate tire location data is not maintained. This results in incorrect and misleading data being displayed to the driver or the mechanic. Once the data is incorrect, one cannot properly rotate the tires based upon the system information.
Other systems use multiple antennas (one per wheel) to determine where each tire is located, and often, the vehicle must be driven before the location determination can be made. These types of systems sense tire pressure through pressure sensors mounted in each tire that transmit tire pressure information to a central receiver. The receiver typically includes a means for identifying the location of each tire, and the system automatically informs the vehicle operator of the location of any tire that falls below a predetermined pressure level. The pressure responsive switch is almost always within the tire or attached to the pressure valve, and may be responsive to a fluctuation at any predetermined pressure level.
The multi-antennae approach has several significant problems. First, the upfront installation costs from higher material and labor due to the complex antenna system are substantial. Second, there is an “information lag” in the time between a tire loosing pressure and the switch being activated, such that the driver may still drive on a substantially flat tire. Further, any subsequent new tire placed on the vehicle must have the antenna placed within it and the system must be reset for the new tire.
Aside from measuring current data of the vehicle's tires, a tire monitoring system also must identify and track the position of the tires from the initial installation through tire rotations and tire replacement. This positional data is important since the driver must know which tire needs to be serviced at the given intervals. When the tires are rotated or the spare is brought into service the tire monitoring system must recognize the tires have changed position so as not to display the old, incorrect tire position.
Specific tire attachment location monitoring systems exist using both simple and complex technologies. In one system, a strong magnet is manually placed on each tire, near magnetic-switch sensors that monitor the location of the tires through identifying the location of each magnet. The magnets can be reattached to new tires as they are placed on the vehicle. This system however requires a manual step of having the operator or service personnel place a magnet on each tire, and also requires the tire-mounted transmitter to include a magnetic switch as part of the mechanism, thereby adding to the cost, reliability and complexity of the overall system.
Another tire pressure monitoring system identifies tire locations by recognizing that certain characteristics are unique to front-located tires verses rear-located tires as well as left-side tires and right-side tires. The system uses a control circuit coupled to a temperature sensor and an accelerometer for each tire to receive information that discriminates between left and right and front and rear tires, respectively. With this information and a pressure signal, the monitoring system provides the operator with tire location and pressure information without reprogramming upon tire rotation. The system also alerts the operator to run-flat tire operational constraints. Although, the sensors and computing power necessary to effect this system are significantly complex and add great cost in manufacturing and installation.
In sum, the maintenance of an accurate record to tire rotation location on a vehicle typically falls upon a specific individual with written records, such as a mechanic. Extant automated tire location monitoring systems tend to be complex and expensive, and require exact interaction, typically with service personnel or by an operator sufficiently skilled to reprogram the tire location, so that the monitoring system can recognize the new location of a tire. There exists a need, therefore, for a robust system which properly records the location rotation of tires on a vehicle, and such system should be simple to implement and inexpensive to install. It is to the provision of such an improved system and method for monitoring the tire location changing events on a vehicle that the present invention is primarily directed.


REFERENCES:
patent: 5600301 (1997-02-01), Robinson, III
patent: 5774047 (1998-06-01), Hensel, IV
patent: 5838229 (1998-11-01), Robinson, III
patent: 6204758 (2001-03-01), Wacker et al.
patent: 6259361 (2001-07-01), Robillard et al.
patent: 6278363 (2001-08-01), Bezek et al.
patent: 6414592 (2002-07-01), Dixit et al.
patent: 6489888 (2002-12-01), Honeck et al.
patent: 6518876 (2003-02-01), Marguet et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for monitoring tire location on a vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for monitoring tire location on a vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for monitoring tire location on a vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3177656

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.