Harmonic vibration damping device for musical instruments...

Music – Instruments – Wind

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C084S38700R, C084S38500A

Reexamination Certificate

active

06664456

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention concerns musical instruments and, more particularly, wind instruments. One type of wind instrument is mainly made of metal and uses a cup mouthpiece and convoluted, generally cylindrical or slightly tapering tubing terminating in a flared end or “bell”. This type of instrument is commonly referred to as a “brass” instrument, even though often constructed of other bright metals such as silver, nickel, etc. Another type of wind instrument, called a “woodwind”, uses a wooden reed caused to vibrate by the focusing of an air column from the mouth of the human player to create sound. The invention is also applicable to stringed instruments, in which the sound vibrations are produced by the relative movement of a bow against the strings of the instrument. The invention is also applicable to firearms.
2. Description of the Related Art
In brass instruments, resonance of the air column occurs at various pitches of sounds produced by the musician's lips at the mouthpiece. In woodwinds, the sound is generally produced by the reed, as in the clarinet, or by the focusing of an air column into a hole at one end, as in the flute. Resonance is caused by the bell of the instrument. Resonance assists the musician in obtaining the tone he desires and also acts to amplify the sound the musician's lips generate at the mouthpiece. The pitches at which resonances will occur depend on the length of the tube defining the “air column” or the path along which the sound travels through the instrument. The tubing length is sufficiently long as to require forming the tubing in loops, as is done in the trumpet, French horn, tuba, and other brass instruments. In woodwinds, the distance the air travels through the instrument is varied by the opening and closing of various holes along the length of the instrument, thereby providing different resonance frequencies. In stringed instruments, the different resonance frequencies are produced by causing different lengths of strings to vibrate by action of the movement of the bow across them.
In addition, in a brass instrument such as the trumpet, three valves are used to allow the musician to selectively vary the length of the tubing in order to enable resonances to be achieved for each note of a complete musical scale. Each valve is received in one of a bank of valve casings located along the length of the main tubing. The valves allow one of respective U-shaped slide tubes of different lengths to be placed in communication with the tubing defining the air column of the instrument to, in effect, vary the length of the air column, shifting the pitches at which resonances will occur.
Resonance necessarily involves a reflection of sound at the bell back into the instrument, but reflection at other points in the bore of the tube is known to cause degeneration of tone. These unwanted reflections may be caused by irregularities along the tube.
Wind instruments act as “coupling” devices which amplify the tones produced by the musician's lips, and/or the reed, and this amplification is at its greatest efficiency at the resonant frequencies. Coupling efficiency affects instrument responsiveness (the ease in which the instrument produces a desired tone in response to the efforts of the musician).
It is well-known in the prior art to produce an improvement in tone quality and responsiveness in musical instruments by strategically placing damping material at specified positions on the instrument.
U.S. Pat. No. 5,644,095 to Davidson discloses an improvement to the tone and responsiveness of brass instruments achieved by holding preshaped pieces of damping material, preferably a waxy, hot-melt adhesive, pressed against surfaces of the instrument tubing sections such as valve casings and tubing sections at particular locations, to reduce sympathetic vibrations of the instrument structure.
U.S. Pat. No. 59,204 to Fiske discloses the interposing of rubber or another suitable elastic substance between the attachments of the main pipe with the bell of a wind instrument.
U.S. Pat. No. 3,635,117 to Nagao discloses a ring fixing structure for a woodwind musical instrument. Rings are fixed around the elongated hollow bodies of the woodwind musical instrument, such as their joints and bell edge for reinforcing and ornamental purposes, grooves are formed, respectively, in opposite portions of the elongated hollow bodies and rings, and an adhesive of hot-melt-type is inserted and disposed in the grooves.
After fitting the ring to the elongated hollow body with both grooves facing each other, the adhesive is heated into a melted state and solidified, and the ring and the elongated hollow body are firmly adhered to each other.
U.S. Pat. No. 4,493,238 to Ricci discloses a violin bow having a weight mounted on the rod section of the bow so that both the magnitude of the weight and the position of the weight relative to the tip of the bow are adjustable. This structure enables tuning of the bow with respect to its bounce characteristics so that the bow will bounce on the violin strings with a speed and force considered desirable by the artist handling the bow.
In regard to firearms, it is well-known to produce vibration damping devices for improving their accuracy.
For example, U.S. Pat. No. 5,661,255 to Webb, III, discloses a weapon barrel oscillation reduction apparatus including a plurality of donut shaped rings or washers mounted on the muzzle end portion of a weapons barrel. The weapon barrel has breech and muzzle end portions and provides a machined ring carrying outer surface at the muzzle end portion. An annular shoulder at one end portion of the ring carrying portion acts as a stop for the plurality of rings mounted thereon. A retainer can be removably attached to the opposite end of the ring carrying surface. Upon assembly, the rings can move slightly in a longitudinal direction with respect to each other during a firing of a projectile from the weapons barrel, where the weight of the rings and the slight movement of the rings function to reduce barrel oscillation.
U.S. Pat. No. 4,913,031 to Bossard et al. discloses a vibration damping device for improving the hit accuracy of a firing weapon. In the case of weapon barrels, which are only secured at one of their ends at the weapon housing during firing of the weapon there occurs, particularly during series firing, bending vibrations or oscillations which impair the hit probability of the fired projectiles. In order to preclude or at least dampen such bending vibrations of the weapon barrel the invention contemplates securing a vibration damping device or damper at the muzzle of the weapon barrel. This vibration damper comprises an inertia body, which is resiliently connected with the weapon barrel muzzle. Also provided is a brake device, which dampens the movement of the inertia body relative to the weapon barrel. The inertia body preferably comprises two ring members which are pressed by springs against two disc members which are rigidly attached to the weapon barrel muzzle. Between the weapon barrel and the ring members of the inertia body there are arranged resilient elements, such as blade or leaf springs.
It has heretofore been recognized that factors which reduce coupling efficiencies include the incidence of “sympathetic” harmonic vibrations, i.e., mechanical vibration of the instrument parts, whether it be in musical instruments or firearms.
Thus, there is a need in the art to improve the responsiveness and tone of musical instruments by minimizing unwanted sympathetic harmonic vibrations. Such a reduction in sympathetic harmonic vibrations along the muzzle of a firearm is also desirable in order to reduce the audible report and to increase accuracy.
SUMMARY OF THE INVENTION
The present inventor has discovered that the tone, responsiveness and frequency range of brass instruments can be greatly improved by providing localized damping at particular effective locations on the valve casings tubings and bracings of the instrument providing pieces of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Harmonic vibration damping device for musical instruments... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Harmonic vibration damping device for musical instruments..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Harmonic vibration damping device for musical instruments... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3176572

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.