Radiant energy – Photocells; circuits and apparatus – Photocell controls its own optical systems
Reexamination Certificate
2001-07-16
2003-10-07
Allen, Stephone B. (Department: 2878)
Radiant energy
Photocells; circuits and apparatus
Photocell controls its own optical systems
C356S121000, C356S512000
Reexamination Certificate
active
06630656
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to wavefront sensors that measure and characterize the phase error in wavefronts, and adaptive optics systems, such as large aperture space telescopes, that utilize wavefront sensors to measure and compensate for phase errors (caused primarily by atmospheric turbulence) in the wavefronts captured therein, thereby overcoming the blurring in images that would otherwise be caused by such phase errors.
BACKGROUND OF THE INVENTION
An adaptive optics system automatically corrects for light distortions in the medium of transmission. For example, if you look far down a road on a very hot and sunny day, you will often see what is usually called a mirage. What you are seeing is the response of the rapidly changing temperature in the air causing it to act like a thick, constantly bending lens. As another example, the twinkling of stars is due to the atmosphere surrounding the Earth. Although twinkling stars are pleasant to look at, the twinkling causes blurring on an image obtained through a telescope. An adaptive optics system measures and characterizes the phase distortion of a wavefront of light as it passes through the medium of transmission (and the optical components transmitted therealong) and corrects for such phase distortion using a deformable mirror (DM) controlled in real-time by a computer. The device that measures and characterizes the phase distortions in the wavefront of light is called a wavefront sensor.
In an adaptive optics based large-aperture space telescope
11
, as illustrative in
FIG. 1
, light from a nominal point source above the atmosphere enters the primary mirror
13
of the telescope
11
and is focused and directed by mirrors
14
A and
14
B to an adaptive optics subsystem
15
. The adaptive optics subsystem
15
includes a tilt mirror
17
and a deformable mirror
19
disposed between its source (the mirrors
14
A and
14
B) and an imaging camera
31
and capturing an image of the point source. A beam splitter
21
directs a portion of the light directed to the imaging camera by the mirrors
17
,
19
to a wavefront sensor
23
that measures the phase distortion in the wavefronts of light directed thereto. A computer
25
cooperates with mirror driver
27
A to control the tilt mirror
17
to stabilize the image, and cooperates with the mirror driver
27
B to control the deformable mirror
19
to compensate for the phase distortions measured in the wavefront of the incident light forming the image, thereby restoring sharpness of the image lost to atmospheric turbulence. In recent years, the technology and practice of adaptive optics have become well-known in the astronomical community.
The most commonly used approach in the wavefront sensor
23
is the Shack-Hartmann method. As shown in
FIG. 2
, this approach is completely geometric in nature and so has no dependence on the coherence of the sensed optical beam. The incoming wavefront is broken into an array of spatial samples, called subapertures of the primary aperture, by a two dimensional array of lenslets. The subaperture sampled by each lenslet is brought to a focus at a known distance F behind each array. A two dimensional detector array (e.g., such as a CCD imaging device or CMOS imaging device) captures an image of the focal spots, and computer-based image processing routine tracks lateral position of such spots. Because the lateral position of the focal spot depends on the local tilt of the incoming wavefront, a measurement of all the subaperture spot positions provides a measure of the gradient of the incoming wavefront. A computer-based two-dimensional integration process called reconstruction can then be used to estimate the shape of the original wavefront, and from the complex conjugate thereof derive the correction signals for the deformable mirror (and the tilt mirror) that compensate for the measured phase distortions.
In the Shack-Hartmann method, measurement inaccuracies due to optical distortion or misalignment of the sensor's optics are minimized by combining the received wavefront with an internal reference laser wavefront upstream of the lenslet array and measuring subaperture tilt/tip as the difference in spot position between the two waves. Since the reference wave suffers no atmospheric distortion, any displacement of the reference wave's subaperture spot position from that of the subaperture's chief ray is attributable to sensor distortion. The differential spot position between the two waves, therefore, provides an accurate measure of the received wavefront's distortion. The Shack-Hartmann sensor is more tolerant of vibration and temperature conditions which, together with its simplicity, allows it to be used in a greater number of adaptive optic applications outside of the laboratory.
However, the Shack-Hartmann method is sensitive to a phase step across the subaperture. Such a phase step may be introduced, for example, if the subaperture bridges the gap between the two segments of a mirror. If a phase step is introduced across the subaperture, the far-field spot formed by the aperture will take on the form of an unaberrated spot combined with a fringe pattern. For any given wavelength, this fringe pattern shifts with changing phase difference, but the pattern repeats for every one wavelength change in phase difference. This is commonly referred to as a 2&pgr; ambiguity in phase difference. Importantly, this 2&pgr; ambiguity leads to measurement errors for large phase steps.
In large aperture space telescopes, course adjustment is required to correct for large phase steps that are initially present within the system. As described above, the Schack-Hartmann method cannot accurately measure such large phase steps.
In addition, because the Schack-Hartmann method cannot accurately measure large phase steps, it is difficult and expensive to design and build Shack-Hartmann wavefront sensors that can operate effectively in highly turbulent transmission mediums. Such sensors require complex and costly components that provide for high sampling frequencies to ensure that the phase step between two successive sampling periods is within the dynamic range of the instrument.
Thus, there is a great need in the art for an improved wavefront sensing mechanism that avoids the shortcomings and drawbacks of prior art Schack-Hartmann wavefront sensors.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, a primary object of the present invention is to provide an improved wavefront sensor that is free of the shortcomings and drawbacks of prior art wavefront sensors.
Another object of the present invention is to provide an improved wavefront sensor that is capable of measuring large phase steps in a wavefront without ambiguity (i.e., with the 2&pgr; ambiguity resolved).
Another object of the present invention is to provide an improved wavefront sensor that provides the benefits inherent in Shack-Hartmann sensing, including high tolerance to vibration and temperature variations.
Another object of the present invention is to utilize dispersed fringe techniques over multiple subapertures of a pupil plane of the wavefront sensor to form far-field fringe patterns corresponding to the subapertures.
Another object of the present invention is to utilize image processing techniques to analyze far-field fringe patterns corresponding to the subapertures of the wavefront sensor in order to derive a measure of the local phase distortion without ambiguity in the sample of incident light corresponding the subapertures.
Another object of the present invention is to integrate an improved wavefront sensor capable of measuring large phase steps without ambiguity, into an adaptive optic subsystem and systems (such as a large aperture space telescope).
Another object of the present invention is to provide an improved space telescope embodying an adaptive optics subsystem capable of measuring and correcting large wavefront phase errors free of 2&pgr; resolution ambiguity.
These and other objects of the present invention will become apparent hereinafter and i
No affiliations
LandOfFree
Method and apparatus for wavefront measurement that resolves... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for wavefront measurement that resolves..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for wavefront measurement that resolves... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3175517