Release assembly and method for deploying a supplemental...

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06517101

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to supplemental restraint systems for use in motor vehicles and, more particularly, to supplemental inflatable restraint systems which are housed within a vehicle interior trim product behind or below an opening which is closed by a door that opens in response to air bag inflation.
BACKGROUND OF THE INVENTION
Supplemental inflatable restraint systems (SIRSs) require a cover that opens to provide a path through which an air bag may deploy into the passenger compartment as the air bag inflates.
Some of the prior art SIRS covers include air bag doors with hinges that allow the doors to swing open in response to air bag inflation. These doors may be mid-mounted on the front vertical face of an instrument panel as shown in U.S. Pat. No. 3,708,179 or may be mounted on an upper surface of an instrument panel or dash board as shown in U.S. Pat. Nos. 4,946,653 and 4,893,833.
One problem with such prior art systems is that the air bag door edges are positioned where children can pry the door open unless it is firmly fastened in place by interlocking mechanical members. Moreover, even if members are designed to interlock securely enough to preclude occupants from prying the air bag door open, such interlocking members may not predictably release the air bag door promptly enough in response to air bag inflation. In such cases, the door may not fully open and may, as a result, obstruct the air bag as it deploys into the vehicle passenger compartment.
One solution to such problems is set forth in U.S. Pat. No. 5,066,037 in which a flange on the door closure is fit within a U-shaped clamp. In such arrangements the locking flange and clamp must be separately positioned and aligned during the assembly of the supplemental inflatable restraint system.
“Another solution is disclosed in U. S. Pat. No. 5,458,365 in which slotted cylindrical heads on specially-molded probes
26
snap into cylindrical sockets
24
in base members
22
to hold an air bag door closed, but yield and pop out of the sockets when the air bag is deployed. Both the probes
26
and the base members
22
must be specially fabricated by injection molding or similar means.”
Another solution, shown in
FIGS. 8-15
of U.S. Pat. No. 5,150,919 involves pins
142
fabricated with threaded portions for attachment to threaded door-mounted studs
141
. An enlarged head of each of the pins
142
extends through one of apertures
133
a
in an instrument panel support structure or canister flange. A spring pin
143
may be provided to hold the head of each pin
142
in its respective aperture
133
a
. Upon deployment, the pins
142
pop out of the holes
133
a.
Still another solution is set forth in U.S. Pat. No. 5,451,074 which is assigned to the assignee of the present invention. This patent shows a hold-down cable secured at its lower end to an instrument panel structure and provided at its upper end with an enlarged head, which is fitted into a keyhole slot
38
in an air bag door. In the embodiment of
FIGS. 2-5
the cable and head are metal and, upon deployment, cause the slot portion
38
b
to deform to release the head
50
. In the embodiments of
FIGS. 6-9
, the cable
92
and its head
134
are plastic and designed to deform upon air bag deployment. In each case, the heads and keyhole slots must be specially fabricated.
Each of the above solutions involves the manufacture and assembly of fasteners and support structures, or the formation of specially shaped sockets and receptacles. None of the above solutions can be implemented without fabricating fasteners and other such structures that do not exist in present systems and that would be time-consuming and expensive to engineer.
What is needed is a supplemental inflatable restraint system with a door hold-down assembly that can be manufactured and assembled without the expense of designing and fabricating new parts.
SUMMARY OF THE INVENTION
In accordance with this invention an inflatable restraint deployment system is provided comprising a simplified hold-down assembly that uses simple, commonly available or easily formable fasteners such as rivets and studs to releasably fasten an air bag door in a tamper-proof closed position. The deployment system comprises a hinged air bag door pivotally supported adjacent an air bag deployment opening in an air bag container. The air bag door is pivotally moveable about a hinged edge between a closed tamper-proof position covering the air bag deployment opening and an open, air bag-release position exposing the air bag deployment opening. A door hold-down member is supported in a fixed position adjacent the air bag deployment opening. A fastener hole rim defines a fastener hole in at least one of the air bag door and the door hold-down member. A door hold-down fastener releasably connects the air bag door to the hold-down member. The fastener includes an elongated shaft portion that extends from either the hold-down member or the air bag door through the fastener hole and is aligned with the direction the door would initially move if forced out of the closed position. A first fastener flange extends outward from around the fastener shaft portion. The first fastener flange engages the fastener hole rim to hold the air bag door in the closed position. The fastener has a first fastener cross-sectional area defined by the intersection of the door fastener and a plane extending perpendicular to the shaft portion through the first fastener flange. The fastener hole defines an area smaller than the first fastener cross-sectional area. Because of this, at least one of the fastener hole rim and the first fastener flange must yield when air bag inflation forces the door to pivot out of the closed position. This forced opening either pulls the door loose from the fastener and door hold-down member or pulls the door loose while retaining the fastener from the door hold-down member.
According to one aspect of the present invention, the door hold-down fastener comprises a stud-type fastener integrally extending from the air bag door. The stud-type fastener may be formed with a substrate portion of the air bag door as a single unitary piece.
According to another aspect of the present invention, the door fastener is a stud-type fastener that integrally extends from the door hold-down member. The stud-type fastener may be formed with the hold-down member as a single unitary piece.
According to another aspect of the present invention, the door fastener is a stud-type fastener that integrally extends from the air bag door. The stud-type fastener may be formed with the air bag door or a substrate portion of the air bag door as a single unitary piece.
According to another aspect of the present invention, the first fastener flange is a yielding stud head made of a yielding material such as plastic and the air bag door substrate is made of a non-yielding material such as metal. The first fastener flange may also be non-yielding, requiring that the fastener hole rim be formed in such a way that it will yield to the passage of the non-yielding fastener flange.
According to another aspect of the present invention, the door fastener is a rivet-type fastener and the fastener hole is the first of two fastener holes. The first fastener hole is disposed in said air bag door and the second fastener hole is disposed in the hold-down member. The first and second fastener holes are axially aligned when the air bag door is in the closed position. The rivet shaft portion extends through the first and second fastener holes and the rivet-type fastener includes a second rivet flange in the form of a rivet head that extends outwardly from the shaft portion adjacent the fastener base. The first and second fastener holes are disposed between said first and second fastener flanges. The rivet head engages the rim of one of the first and second fastener holes while the first fastener flange engages the rim of the other of the first and second fastener holes. The rivet may be any one of a number of commercially available rivets, either me

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Release assembly and method for deploying a supplemental... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Release assembly and method for deploying a supplemental..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Release assembly and method for deploying a supplemental... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3175426

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.