Method for forming platinum-rhodium stack as an oxygen barrier

Semiconductor device manufacturing: process – Having magnetic or ferroelectric component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S240000, C438S650000

Reexamination Certificate

active

06524867

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is generally related to semiconductor fabrication. In particular, the present invention relates to a conductive metal film stack in a semiconductor.
2. Description of the Related Art
Electrical conductors are a fundamental part of integrated circuits. Electrical conductors can be used to connect devices and form conductive films that, in turn, can also be used as electrodes in a capacitor that is used to store charge in a memory cell. Preferably, integrated circuit capacitors feature a relatively large amount of capacitance in a small geometry to preserve space on the chip.
Conventional techniques for shrinking capacitor geometries include processing steps that increase the area of electrodes used as capacitor plates and include the use of high-k materials for the dielectric.
Desirable characteristics for a conductive film include relatively good conductivity and relatively good resistance to the diffusion of oxygen. Relatively good conductivity allows a relatively low contact string resistance to a device. Relatively good resistance to the diffusion of oxygen provides protection to sensitive materials, particularly where the fabrication includes formation of high-k dielectric materials. Typical high-k dielectric materials, such as barium strontium titanate (BST) (Ba
x
Sr
1-x
TiO
3
), are rich in oxygen. A highly oxidizing environment is typically required during formation of such high-k dielectric materials. Additionally, oxygen can diffuse from the high-k dielectric material after deposition, leaving conductive leakage paths in the dielectric as well as oxidizing neighboring materials.
In the past, various metals and alloys have been deposited as electrical conductors. For example, platinum (Pt) is one metal that is frequently deposited. However, films formed from platinum provide a relatively poor barrier to oxygen and allow underlying layers to oxidize. For example, if the platinum is deposited directly on silicon (Si), the diffused oxygen can result in the conversion of silicon (Si) to silicon dioxide (SiO
2
), which in turn results in an increase in the contact string resistance to the affected device. In another example, where platinum is deposited on a layer of tantalum that is used as an adhesion layer, the diffused oxygen can convert the tantalum (Ta) to an oxide of tantalum, thereby reducing the conductivity of the original tantalum adhesion layer.
SUMMARY OF THE INVENTION
Embodiments of the present invention provide an electrically conductive film stack for semiconductors and methods and apparatus for providing the same. The film stack can be used either as a conductor itself or in conjunction with another conductor. Advantageously, the film stack can form an oxygen barrier that substantially prevents the loss of oxygen from high-k (high dielectric constant) dielectric material and prevents oxidation of neighboring materials, such as silicon (Si). The film stack can be deposited on a three-dimensional structure, such as a wall of a high-k metal-insulator-metal (MIM) capacitor, to form an electrode for the capacitor. The electrode formed by the film stack includes graining, which enhances the surface area of the electrode and thereby increases the capacitance of the capacitor.
One process according to an embodiment of the present invention deposits an electrode for a metal-insulator-metal capacitor. The electrode serves as both an electrically conductive plate for the capacitor as well as an oxygen barrier, thereby protecting neighboring materials. The electrode is deposited in multiple layers. A first layer of the multiple layers is a layer of platinum-rhodium (Pt-Rh) alloy deposited in a metal organic chemical vapor deposition (MOCVD) process in the presence of an oxidizer. A second layer of the platinum-rhodium alloy is deposited on the first layer in the presence of a reducer. A third layer of the platinum-rhodium alloy is deposited on the second layer, again in the presence of an oxidizer.
Another process according to an embodiment of the present invention deposits a metallic film stack on a substrate. A first film is deposited with a reducer and a second film of a similar composition is deposited on the first film with an oxidizer.
In another process according to an embodiment of the present invention, the process deposits a metallic film stack by alternating between depositing a layer in the presence of a reducing agent, and depositing a layer in the presence of an oxidizing agent, while using the same metal source gas(es) during both steps. The depositing of layers can be repeated to build up a thickness of the film stack.
One system according to an embodiment of the present invention provides a MOCVD system that is adapted to alternately introduce an oxidizing reactant gas and a reducing reactant gas. A plurality of vaporizers can prepare organometallic platinum and organometallic rhodium for introduction to the deposition chamber via a relatively inert gas, such as argon (Ar) or helium (He).
One embodiment of the present invention includes a platinum-rhodium alloy capacitor plate that is deposited on a substrate. The capacitor plate includes a rough texture to enhance the capacitance of the capacitor cell. Preferably, one surface of the capacitor plate exhibits hemispherical grains with an average size of about 50 Angstroms (Å) to about 1000 Å, and more preferably of about 100 Å to about 500 Å. It will be understood by one of ordinary skill in the art that an optimal area enhancement through the HSG Pt-Rh will vary depending on the geometry of the capacitor. Preferably, the platinum-rhodium alloy is about 5% to 50% rhodium by atomic ratio. More preferably, the platinum-rhodium alloy is about 10% to 40% rhodium by atomic ratio. Additionally, the capacitor plate is preferably from about 50 Å to about 1000 Å thick. More preferably, the capacitor plate is about 100 Å to about 600 Å thick. Advantageously, the capacitor plate provides a barrier to oxygen, thereby substantially preventing the oxidation of neighboring materials and allowing the use of high-k dielectrics.
Another embodiment according to the present invention includes a metal-insulator-metal integrated circuit capacitor. In the metal-insulator-metal capacitor, at least one of the plates or electrodes is made from a platinum-rhodium alloy. The platinum-rhodium alloy plate advantageously includes a grainy surface that faces the dielectric, and further advantageously provides an oxygen barrier for the dielectric. Preferably, the dielectric is a relatively high-k material with a relative permittivity of at least 5, or more preferably at least 10. In one embodiment, the dielectric material selected is from tantalum oxide (Ta
2
O
5
) and barium strontium titanate (BST) (Ba
x
Sr
1-x
TiO
3
).


REFERENCES:
patent: 5504041 (1996-04-01), Summerfelt
patent: 5576928 (1996-11-01), Summerfelt et al.
patent: 5619393 (1997-04-01), Summerfelt et al.
patent: 5622893 (1997-04-01), Summerfelt et al.
patent: 5729054 (1998-03-01), Summerfelt et al.
patent: 5807774 (1998-09-01), Desu et al.
patent: 5844318 (1998-12-01), Sandu et al.
patent: 5874364 (1999-02-01), Nakabayashi et al.
patent: 5963835 (1999-10-01), Sandhu et al.
patent: 5989338 (1999-11-01), DeBoer et al.
patent: 6090701 (2000-07-01), Hasunuma et al.
patent: 6177351 (2001-01-01), Beratan et al.
Kodas et al. “The Chemistry of Metal CVD” (Jan. 1994) Chapter 8, pp. 397-398 and 408.
Koops et al. “Fabrication and Characterization of Platinum Nanocrystalline Material Grown By Electron-Beam Induced Deposition”-J. Vac. Sci Technol. B 13(6), Nov./Dec. 1995, pp. 2400-2403.
Aoyama et al. “Ru Electrode Deposited by Sputtering in Ar/O2Mixture Ambient”—J. Appl. Phys. vol. 37 (1998) pp. 5701-5707.
Aoyama et al. “Interfacial Layers Between Si and Ru Films Deposited By Sputtering In Ar/O2Mixture Ambient”—1998 Publication Board, Japanese Journal of Applied Physics, pp. L242-244.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for forming platinum-rhodium stack as an oxygen barrier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for forming platinum-rhodium stack as an oxygen barrier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming platinum-rhodium stack as an oxygen barrier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3173424

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.