Method for monitoring end of life for battery

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06631293

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of determining when the end of life of a battery is approaching, and circuitry which may be used with that process. The invention particularly relates to such methods where access to the battery for conventional testing means is not readily available, where maintenance of sufficient levels of power from the battery are important with minimal interruption, and for monitoring of battery power in pacemakers.
2. Background of the Art
Over the last several decades, the lithium-iodine battery has been widely adopted as a power source for the pacemaker industry, as well as other applications. Indeed, the broad use of this battery system in the pacemaker industry has resulted in it becoming substantially the standard power source for that industry. Well over 1,000,000 such batteries have already been implanted. The lifetime of such cells is not great enough to outlast the patient, so the industry has experienced occurrences where such batteries have come to their End Of Life (EOL) under nominal loads and normal circumstances. In addition to the actual replacement experiences of depleted batteries, methods have been developed for approximating the EOL curve of such batteries. It has become evident that there is a great need for matching or interfacing the device being powered by the battery with the parameters of battery behavior to optimize EOL operation.
In the practice of the invention of this application, reference is made to “lithium systems,” meaning lithium-type battery cells. As pointed out in the article of Parsonnet et al., American Heart Journal, October 1977, Vol. 94, No. 4, pp. 517-528, in 1977 there were at least 5 types of lithium systems in widespread use, including lithium iodine types such as made by Wilson Greatbatch, Ltd. and Catalyst Research Corporation. Today an even wider number and variety of lithium batteries are available. This invention is directed particularly, but without limitation, to battery systems, especially the lithium battery systems characterized by having an internal impedance characteristic curve which is initially substantially linear as a function of energy depletion, but which asymptotically approaches an energy production (output) limit and increasing internal impedance. This total output maximum and high internal impedance is found near, but well before EOL. At that time, the linear characteristic relationship between energy depletion and internal impedance exhibits a knee and internal impedance rises rapidly. This characteristic of lithium-type sources is discussed in my U.S. Pat. No. 4,031,899 which patent is incorporated herein by reference. In the lithium iodine type battery, the cell cathode may consist of molecular iodine weakly bonded to polyvinyl pyridine (P2VP). At beginning of battery life in this type of system, there are about 6 molecules of iodine to each molecule of P2VP. No electrolyte, as such, is included in construction of the cell, but a lithium iodine (LiI) electrolyte layer forms during cell discharge, between the anode and cathode. The LiI layer presents an effective internal impedance to Li
+
ions which travel through it. Since the LiI layer grows with the charge drawn from the battery, or milliamp hours (mAh), this component of the battery impedance increases linearly as a function of mAh (i.e., as a function of cell energy depletion). In the pacemaker environment, since there is constant (but not uniform) energy depletion, this component of the internal impedance increases continually with time. However, and particularly for a demand pacer which at any time may or may not be delivering stimulus pulses, the increase of this component is not linear with time, due to the fact that current drain is not uniformly constant.
For the lithium iodine type cell, there is another component of internal impedance which is caused by depletion of iodine in the cathode. The cathode is essentially a charge transfer complex of iodine and P2VP, and during discharge of the cell iodine is extracted from this complex. In the beginning there are about 6 molecules of iodine to each molecule of P2VP. During extraction of iodine from the complex, the resistance to this procedure is low until the point is reached where about only 2 molecules of iodine are left for each molecule of P2VP, at which point this impedance rises very sharply. This gives rise to a non-linear internal impedance component which, for the lithium system, is called variously the depletion resistance, the depolarizer resistance, the charge transfer complex resistance, or the pyridine resistance. By whatever name, the combination of the non-linear component with the linear component produces the impedance characteristic with a knee occurring toward EOL, the knee being caused by the reaching of depletion of available charge carriers from the cathode.
The pacer industry is aware of the potential problem of determining EOL. Since the internal impedance of the source rises drastically after the knee, the battery may have very little or no useful lifetime left after the knee has been reached and passed. Some pacer manufacturers have predicated their design for determining EOL upon detection of the battery output voltage, which voltage comprises the constant open circuit voltage minus the drop caused by the current drain across the internal resistance. However, this is a highly tenuous and very unsatisfactory premise for determining EOL, due to the fact that actual current drain near EOL cannot be predicted nor directly measured with ease. For any manufacturer's pacer which is implanted and used in combination with a given electrode, there will be a variation in the effective load as seen by the lithium battery, and a resulting variation in the overall current drain. Accordingly, if the EOL design is predicated upon sensing voltage drop to a given level, there can be very little assurance that the level chosen will closely and accurately correspond to the knee of the cell curve.
One lithium cell manufacturer, Catalyst Research Corporation, in a paper presented to the Workshop on Reliability Technology For Cardiac Pacemakers, October, 1977, pointed out that for such batteries, sensing of the battery internal resistance is more reliable than voltage sensing. The position that cell resistance rather than cell voltage is a better warning indicator is based upon the observation that the resistance characteristic has a much less steep EOL curve. Stated differently, at low currents typical for pacers, plots of resistance against time give more warning than plots of voltage against time. If voltage characteristics for different current drains are plotted, the knees are observed to have a fairly wide variation, meaning that the voltage at which the knee might appear is subject to substantial variation as a function not only of the particular battery being used but also the load being drawn by the pacer. On the other hand, plots of resistance indicate that the knee varies over a smaller range of values of internal resistance. Since the current drain may vary by as much as a factor of 5 to 10 due to different electrode loads (which may be varied between similar units by pre-programming), the variation in voltage may be as much as five to ten times as great as the variation of internal resistance. Monitoring the internal resistance provides a direct indication of the state of the battery, whereas monitoring the output voltage gives only a secondary indication, reflecting both the state of the battery and the operating condition of the pacer. This condition, it is anticipated, will be even more emphasized with the development of new, thin, large area batteries and cells which generally have steeper EOL slopes.
U.S. Pat. No. 4,031,899 discloses a circuit which can be programmed to provide an indication of the internal resistance of the lithium battery cell. A switching circuit is used which alternately connects the relatively high current drain output circuitry and the relatively low curr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for monitoring end of life for battery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for monitoring end of life for battery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for monitoring end of life for battery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3172307

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.