Power line communications system and method of operation...

Multiplex communications – Generalized orthogonal or special mathematical techniques – Particular set of orthogonal functions

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S210000, C375S346000, C340S315000

Reexamination Certificate

active

06522626

ABSTRACT:

TECHNICAL FIELD
This invention relates to a power line communication systems and method of operation thereof and in particular to a system and method utilising Orthogonal Frequency Division Multiplexing (OFDM).
BACKGROUND OF THE INVENTION
It is known to transport telecommunications signals over an electricity distribution or power transmission network. Delivering a telecommunications service in this manner is attractive as it avoids the need to install new cabling to each subscriber. By using existing electricity distribution cabling to carry telecommunications signals, significant cost savings are possible. International Patent Application WO94/09572 shows an electricity distribution network that carries telecommunications signals.
There are essentially two known methods for transmitting data over power lines. A first method uses the power signal itself, modifying the shape of the power signal at certain known points in response to the data that is to be carried. An example of this is shown in UK Patent GB 1,600,056. A second method uses a carrier signal having a different frequency from that of the power signal, the carrier signal being modulated by the data.
One of the problems with using power lines as a communications medium is that they are subject to noise and interference. A first type of noise is due to cables picking up radio signals such as broadcast AM radio signals and amateur radio band transmissions. Overhead cables are particularly prone to this type of noise. A second type of electrical noise is due to electrical equipment coupled to the power lines. Electric motors, thermostats and gas discharge lighting are particularly prone to generating noise. Noise propagates along the power lines and combines with communications signals. The level of noise can be high enough, and persist for long enough, to corrupt communications signals.
Noise can impose constraints when using the power line to carry data. The aforementioned patent application WO94/09572 shows an electricity distribution network which carries telecommunications signals and teaches that the amount of noise entering the network from the premises can be reduced by installing conditioning elements at each premises. This requires a considerable amount of work and expense.
Power line transmission is one of several ways for delivering communications to subscriber premises and is therefore sensitive to competition with existing copper wires and more recent alternatives such as optical fibre/coaxial cable delivery and fixed radio access techniques. Therefore, there is a desire to provide a system that is capable of delivering an acceptable quality of service at a cost that is attractive to a subscriber. One of the aspects of a power line transmission system that is particularly sensitive to cost is the customer premises equipment (CPE). The customer premises equipment must be capable of delivering an acceptable quality of service and interfacing to equipment in a subscriber's premises.
A number of different modulation schemes may be used in the provision of data services over power line. The applicant has found a number of schemes to be inappropriate:
Spread spectrum in the context of access by time division is not well matched to this application because of its low spectral efficiency.
High order Quadrature Amplitude Modulation QAM (16 QAM and above) is spectrally efficient but relatively insensitive i.e. it requires a quite high signal to noise ratio for reliable reception.
Binary Phase-Shift Keying BPSK either employing raised cosine filtering or minimum shift keying is not sufficiently spectrally efficient for a robust solution to this application.
However, the applicant believes two schemes to be acceptable, as follows:
Quadrature Phase-Shift Keying QPSK on a single carrier with raised cosine filtering has sufficient spectral efficiency for including significant coding overhead to strengthen the link's robustness. It does however require adaptive equalisation (albeit with very slow adaptation speed requirement) to cope with frequency selective fading.
Orthogonal Frequency Division Multiplexing OFDM with QPSK modulation on the sub-carriers results in a spectral efficiency which is comparable to the above with contiguous frequency allocations. However, this technique is potentially superior in situations where the allocated spectrum is non-uniform and non-contiguous. There is no need for tapped delay line adaptive equalisers; instead, a simple channel compensation algorithm has to be included. Coding is required to make the radio interface robust.
The use of OFDM provides a superior flexibility to fit into non-uniform and non-contiguous frequency allocations, while maintaining reasonable spectral efficiency. This results form the intrinsic nature of OFDM which is composed of a large number of simultaneously transmitted sub-carriers which are staggered in frequency each individually occupying a low bandwidth, as illustrated in FIG.
1
.
The scheme's flexibility comes about from the ability to designate which sub-carriers are to be activated and which are not. Regarding spectral efficiency, the signal composition results in an intrinsic spectrum fall-off outside of the active bandwidth commensurate with the bandwidth of each sub-carrier rather than with the total spectrum width. Thus relatively low excess bandwidths can be achieved.
Therefore, the spectral attributes of OFDM represent the major advantage in favour of its selection for use in power line telecommunication systems. However, despite the clear advantages that could be achieved by the use of ODFM or CODFM in power line telecommunications systems there are presently no commercially available power line telecommunications systems which utilise an OFDM or COFDM modulation scheme.
It is submitted that one reason for the non-use commercially at present of OFDM or COFDM is the problem of impulse noise, as mentioned above. The applicant has discovered that large narrow regular spikes of impulsive interference can arise, for example, from fluorescent lights, which can conceivably flood all the sub-carrier demodulators with sufficient noise to prevent reception of complete symbols, as illustrated in FIG.
2
. This noise is aligned with mains frequency.
SUMMARY OF THE INVENTION
The present invention seeks to minimise or overcome the above problem, and other problems that will become apparent from the following description.
According to a first aspect of the present invention there is provided an OFDM power line modem receiver comprising a clipping system adapted to clip an incoming OFDM data waveform, which includes a regular impulsive noise component, so as to reduce the level of said noise on the waveform.
Preferably, when the receiver is arranged to receive a coded OFDM signal (COFDM), wherein the clipping level can be altered, enabling the clipping level to be set such that the COFDM signal is not corrupted beyond the error correcting capabilities of the coding scheme utilised while reducing the power in the noise signal thus preventing corruption of the data in the waveform upon detection.
Preferably, the receiver further comprising a Fourier Transform element and a gain control element, wherein the clipping system and the gain control element act upon a received signal prior to its application to the Fourier Transform element.
This prevents the majority of the impulse power spreading across the OFDM frequency cells.
According to a second aspect of the present invention there is provided method of operating an OFDM power line modem receiver comprising the step of clipping an incoming OFDM data waveform, which includes a regular impulsive noise component, so as to reduce the level of said noise in the waveform.
Preferably, the signals are carried over the power line on radio frequency (RF) carriers.
Most preferably, the signals are carried over the power line in the frequency band greater than 1 MHz. Preferably, the signals comprise data packets which are transmitted with a bit rate of at least 500 kbps.
According to a third aspect of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power line communications system and method of operation... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power line communications system and method of operation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power line communications system and method of operation... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3170189

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.