192 clutches and power-stop control – Vortex-flow drive and clutch – Including drive-lockup clutch
Reexamination Certificate
2001-03-07
2003-02-11
Schwartz, Christopher P. (Department: 3683)
192 clutches and power-stop control
Vortex-flow drive and clutch
Including drive-lockup clutch
C475S347000
Reexamination Certificate
active
06516928
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a hydrodynamic coupling device, in particular a hydrodynamic torque converter, including a casing arrangement and a turbine rotor which can be rotated about an axis of rotation in the casing arrangement. The turbine rotor has a turbine rotor shell which supports a plurality of turbine rotor blades, and a turbine rotor hub which is coupled or can be coupled to a drive element for joint rotation. A lock-up clutch arrangement is provided for the optional production of a torque transmission connection between the turbine rotor and the casing arrangement, and torsional vibration damper arrangement couples the turbine rotor for torque transmission to a coupling element of the lock-up clutch arrangement. A positive drive arrangement is provided on the torsional vibration damper arrangement, which positive drive arrangement is in drive engagement for torque transmission with a mating positive drive arrangement on the turbine rotor.
2. Description of the Related Art
A hydrodynamic coupling device of this type is known, for example, from U.S. Pat. No. 5,813,227. In this known hydrodynamic coupling device, a central disk element of the torsional vibration damping arrangement, which ultimately acts as a coupling element, has teeth protruding radially inward as a positive drive arrangement, which teeth are in interdigitating engagement with mating teeth on a drive element. This drive element is welded onto an outer side of the turbine rotor shell. On the other side, the turbine rotor blades are connected to the turbine rotor shell or are in contact with the latter. This construction has the problem that the attachment of the drive element by welding can lead to deformations in the region of the turbine rotor shell so that the flow characteristics of the same can be adversely affected.
DE 198 38 445 A1 reveals a hydrodynamic coupling device in the form of a hydrodynamic torque converter in which a region of the torsional vibration damping arrangement to be coupled to the turbine rotor is permanently coupled to the turbine rotor shell by riveting. In general, the riveting also represents an operational procedure which can only be undertaken after the connection of the turbine rotor shell to the turbine rotor blades so that, here again, it is not possible to ensure that no deformations of the turbine rotor occur per se during this operational procedure.
SUMMARY OF THE INVENTION
It is an object of the present invention to make available a hydrodynamic coupling device in which the torque transmission connection between a torsional vibration damper arrangement and a turbine rotor can be produced in a simple manner without the danger of any type of impairment being generated in the region of the turbine rotor.
According to the present invention, this object is achieved by a hydrodynamic coupling device, in particular a hydrodynamic torque converter, including a casing arrangement and a turbine rotor which can be rotated about an axis of rotation in the casing arrangement. The turbine rotor has a turbine rotor shell which supports a plurality of turbine rotor blades, and a turbine rotor hub which is coupled or can be coupled to a drive element for joint rotation. A lock-up clutch arrangement is provided for the optional transmission of torque between the turbine rotor and the casing arrangement, a torsional vibration damper arrangement and couples the turbine rotor for torque transmission to a coupling element of the lock-up clutch arrangement. A positive drive arrangement is provided on the torsional vibration damper arrangement, which positive drive arrangement is in drive engagement for torque transmission with a mating positive drive arrangement on the turbine rotor.
According to the invention, the positive drive arrangement is formed integrally on the turbine rotor shell.
The provision of this mating positive drive arrangement as an integral constituent of the turbine rotor shell makes it possible to form this arrangement as early as during the manufacture of the turbine rotor shell, i.e. at a time when the turbine rotor shell has not already been necessarily combined with the turbine rotor blades. It is then unnecessary to engage in further measures when the turbine rotor shell is joined together with the turbine rotor blades in order to be able to make such a mating positive drive arrangement available. Finally, therefore, the danger that any variety of damage can be generated in the region of the turbine rotor shell or the turbine rotor does not exist either. In addition, such an embodiment of the hydrodynamic coupling device according to the invention makes it possible to further reduce the number of parts and therefore to simplify its assembly.
As an example, it is possible to provide for the mating positive drive arrangement to comprise a plurality of drive apertures formed on the turbine rotor shell and for the positive drive arrangement to comprise a plurality of drive protrusions on a coupling element of the torsional vibration damper arrangement and integrally formed on it. In an embodiment variant which is particularly simple to manufacture, it is possible to provide for the drive apertures to be formed by engagement openings. These can, for example, be generated by punching or stamping.
According to a further aspect, the turbine rotor hub has an essentially sleeve-type first coupling region, radially located on the inside, for coupling to the drive element, and an essentially annular second coupling region for coupling to the turbine rotor shell.
According to U.S. Pat. No. 5,813,227, the two coupling regions of the turbine rotor hub are provided on an integrally configured component which can, for example, be manufactured by a casting process or can be brought to its shape by chip-removal machining. This, however, involves carrying out machining processes which are relatively complex and expensive and which lead to a high proportion of scrap, particularly in the case of chip-removal machining.
The invention therefore further proposes that the first coupling region and the second coupling region are components which are separately manufactured and permanently connected together.
Due to the design of the two coupling regions as separate components which have to be connected together, each of these components can be machined per se alone and can be manufactured from a material suitable for it. As an example, the annular second coupling region could be manufactured in a very simple and low-cost manner as a sheet-metal punched part. The two coupling regions can then be connected together by welding and, likewise, the second coupling region can be connected to the turbine rotor shell by welding.
According to a further aspect, the present invention relates to a hydrodynamic coupling device having a guide rotor arrangement with a guide rotor ring on which are carried a plurality of guide rotor blades and which is supported, on a support element, so that it can be rotated in one direction about the axis of rotation, by means of a bearing arrangement, for example a free-wheel arrangement.
In the hydrodynamic coupling device known from U.S. Pat. No. 5,813,227, a support or bearing ring is respectively provided on each axial side for the axial support of the guide rotor and of the guide rotor ring supporting the guide rotor blades, which support or bearing rings are, for example, held relative to the guide rotor ring by press-fit or/and by axial and radial support.
In order to be able to further reduce the number of parts in a hydrodynamic coupling device of this type, the invention therefore further proposes that a bearing section, which is axially supported on the turbine rotor or the casing arrangement, be integrally configured on the guide rotor ring. This bearing section can then, for example, be supported on the turbine rotor hub.
In order to ensure, in an arrangement of this type, that the working fluid necessary for the operation of the hydrodynamic coupling device can be guided into the internal s
Sasse Christoph
Wack Erwin
Mannesmann Sachs AG
Schwartz Christopher P.
LandOfFree
Hydrodynamic coupling device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hydrodynamic coupling device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrodynamic coupling device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3159691