Discrete air and nozzle chambers in a printhead chip for an...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06582059

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
FIELD OF THE INVENTION
This invention relates to a printhead chip for an inkjet printhead. More particularly, this invention relates to a printhead chip for an inkjet printhead, which includes discrete air and nozzle chambers.
BACKGROUND OF THE INVENTION
As set out in the above referenced applications/patents, the Applicant has spent a substantial amount of time and effort in developing printheads that incorporate micro electro-mechanical system (MEMS)—based components to achieve the ejection of ink necessary for printing.
As a result of the Applicant's research and development, the Applicant has been able to develop printheads having one or more printhead chips that together incorporate up to 84 000 nozzle arrangements. The Applicant has also developed suitable processor technology that is capable of controlling operation of such printheads. In particular, the processor technology and the printheads are capable of cooperating to generate resolutions of 1600 dpi and higher in some cases. Examples of suitable processor technology are provided in the above referenced patent applications/patents.
The Applicant has overcome substantial difficulties in achieving the necessary ink flow and ink drop separation within the ink jet printheads. A number of printhead chips that the Applicant has developed incorporate nozzle arrangements that each have a nozzle chamber with an ink ejection member positioned in the nozzle chamber. The ink ejection member is then displaceable within the nozzle chamber to eject ink from the nozzle chamber.
A particular difficulty that the Applicant addresses in the present invention is to do with the delicate nature of the various components that comprise each nozzle arrangement of the printhead chip. In the above referenced matters, the various components are often exposed as a requirement of their function. On the MEMS scale, the various components are well suited for their particular tasks and the Applicant has found them to be suitably robust.
However, on a macroscopic scale, the various components can easily be damaged by such factors as handling and ingress of microscopic detritus. This microscopic detritus can take the form of paper dust.
It is therefore desirable that a means be provided whereby the components are protected. Applicant has found, however, that it is difficult to fabricate a suitable covering for the components while still achieving a transfer of force to an ink-ejecting component and efficient sealing of a nozzle chamber.
The Applicant has conceived this invention in order to address these difficulties.
SUMMARY OF THE INVENTION
According to the invention, there is provided a printhead chip for an inkjet printhead, the printhead chip comprising a substrate; and
a plurality of nozzle arrangements that is positioned on the substrate, each nozzle arrangement comprising
nozzle chamber walls and a roof that define a nozzle chamber with the roof defining an ink ejection port in fluid communication with the nozzle chamber; an ink-ejecting member that is positioned in the nozzle chamber, the ink-ejecting member being displaceable towards and away from the ink ejection port so that a resultant fluctuation in ink pressure within the nozzle chamber results in an ejection of ink from the ink ejection port;
at least one work-transmitting structure that is displaceable with respect to the substrate and is connected to the ink-ejecting member so that displacement of the work transmitting structure results in displacement of the ink-ejecting member;
an actuator that is connected to the work-transmitting structure, the actuator being capable of displacing the work transmitting structure upon receipt of an electrical drive signal; and
air chamber walls and a covering formation that is positioned over the actuator, the air chamber walls and the covering formation defining an air chamber in which the actuator is positioned, the roof, the work transmitting structure and the covering formation together defining a protective structure positioned in a common plane.


REFERENCES:
patent: 6425651 (2002-07-01), Silverbrook
patent: 404001051 (1992-06-01), None
patent: WO 00/23279 (2000-04-01), None
patent: WO 01/89839 (2001-11-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Discrete air and nozzle chambers in a printhead chip for an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Discrete air and nozzle chambers in a printhead chip for an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Discrete air and nozzle chambers in a printhead chip for an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3155100

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.