Light transmission apparatus and method

Optical waveguides – Noncyclindrical or nonplanar shaped waveguide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S901000, C385S147000, C345S082000, C345S102000, C345S044000

Reexamination Certificate

active

06574414

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the field of light transmission devices and in particular, to a lightpipe apparatus and method for transmitting light.
BACKGROUND OF THE INVENTION
Conventional electronic devices such as, for example, desktop modems typically include one or more light indicators that extend through the outer casing of the device. These light indicators allow the user to monitor the various functions of the electronic device. Conventional light indicators are typically comprised of a transparent material to allow light to be transferred from an LED (light emitting diode) mounted on a circuit board within the device to a position outside of the outer casing. As a result, a first end portion of these conventional indicators is positioned adjacent to an LED on the circuit board within the outer casing, and the second end portion extends through the outer casing to allow the user to view the second end portion. When the LED is turned on and emits visible light, the light is transferred through the transparent light indicator to a position outside of the outer casing to provide notice to the user.
Problems arise when attempting to use these conventional light indicators to transfer light from the circuit board to a position outside of the outer casing. For example, there is oftentimes very little space within the outer shell of the housing to position these conventional light indicators in association with the circuit board. As a result, conventional light indicators typically are not configured in a straight line. Instead, they oftentimes have rather complicated and intricate configurations to allow them to fit within the available space between the circuit board and the outer shell. For example, in certain applications, they may have one or more bends between the circuit board and the outer shell. As a result, the light that is transmitted through the light indicator has to change directions one or more times. This, in turn, results in a certain amount of light loss as the light travels though the indicator thereby decreasing the light intensity to the user by as much as 70% in certain situations. This also results in an unequal distribution of light, thereby decreasing the visual impact of the indicator. Finally, the loss of light may also create “black spots” that can be seen by the user, which obviously reduces the effectiveness of the indicator.
These problems have been compounded by the fact that industrial designs of electronic devices are becoming more complex, and the amount of available space within the outer enclosure has been decreasing. As a result, the configuration of conventional light indicators has become even more complex in an attempt to transmit light through tight spaces and around sharp corners, which in turn has resulted in, in certain situations, even more light loss.
Attempts have been made to overcome these problems. For example, attempts have been made to apply a frosted finish to the exposed surface of the light indicator to more evenly distribute the light. However, this solution does nothing to preserve and/or increase the intensity of the light as it passes through the indicator. Moreover, attempts have been made to provide a light indicator that has a more simplified geometry. However, this may result in unacceptable limitations on the overall design of the electronic device, and may increase the design and manufacturing costs of the device.
Accordingly, it would be desirable to have an apparatus and method for transmitting light that overcomes the disadvantages described above.
SUMMARY OF THE INVENTION
One aspect of the invention provides a lightpipe apparatus including a lightpipe body for transmitting light. The lightpipe body includes a receiving end portion for receiving the light and a display end portion. The lightpipe body further includes a first refractive surface disposed between the receiving end portion and the display end portion. An opaque substrate is applied to the first refractive surface to reflect the light toward the display end portion. The lightpipe body may preferably be comprised of a transparent material such, for example, a polycarbonate. The receiving end portion may preferably have a concave shape, although other shapes are contemplated. The first refractive surface may preferably be aligned with the display end portion. The display end portion may preferably include a viewing surface, which may have an oval shape. The first refractive surface may preferably be angled with respect to the viewing surface. The first refractive surface may preferably be angled approximately 45 degrees with respect to the viewing surface. A light source may preferably be in communication with the receiving end portion of the lightpipe body. The light source may preferably be a light emitting diode. A circuit board may also be provided, and the light source may preferably be mounted to the circuit board. The lightpipe body may preferably include a second refractive surface positioned between the first refractive surface and the receiving end portion. The second refractive surface may preferably be positioned opposite the first refractive surface, and may preferably be angled with respect to the receiving end portion to direct the light from the receiving end portion to the first refractive surface. The second refractive surface may preferably be angled approximately 45 degrees with respect to the receiving end portion.
Another aspect of the invention provides a method of transmitting light through a lightpipe apparatus. A lightpipe body is provided. The lightpipe body includes a receiving end portion for receiving the light and a display end portion. The lightpipe body further includes a first refractive surface disposed between the receiving end portion and the display end portion. An opaque substrate is applied to the first refractive surface. The light is directed into the receiving end portion. The light is then directed from the receiving end portion to the first refractive surface and the opaque substrate. The light is reflected from the first refractive surface toward the display end portion. A second refractive surface may also be provided. The second refractive surface may preferably be positioned between the first refractive surface and the receiving end portion. The light may preferably be directed from the receiving end portion to the second refractive surface. The light may preferably be reflected from the second refractive surface to the first refractive surface.
Another aspect of the invention provides an electronic device including an outer protective enclosure. A circuit board is mounted within the outer protective enclosure. A light source for generating light is mounted on the circuit board. A lightpipe apparatus is disposed within the outer protective enclosure and is in communication with the light source. The lightpipe apparatus includes a lightpipe body for transmitting the light. The lightpipe body includes a receiving end portion for receiving the light and a display end portion. The lightpipe body further includes a first refractive surface disposed between the receiving end portion and the display end portion. An opaque substrate is applied to the first refractive surface to reflect the light toward the display end portion. The electronic device may preferably be a modem. The outer protective enclosure may preferably include at least one opening, and the display end portion may preferably extend through the opening. The receiving end portion may preferably be in communication with the light source.
Another aspect of the invention provides a system for transmitting light. A plurality of lightpipe bodies for transmitting light is spaced apart along a support member. Each of the plurality of lightpipe bodies includes a receiving end portion for receiving the light and a display end portion. Each of the lightpipe bodies further includes a first refractive surface disposed between the receiving end portion and the display end portion. An opaque substrate is applied to the first

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light transmission apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light transmission apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light transmission apparatus and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3153024

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.