Method of designing an equalizer and like electronic components

Wave transmission lines and networks – Coupling networks – Equalizers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C333S170000, C333S175000

Reexamination Certificate

active

06583684

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed towards a method of structuring an electronic component which does not require manual tuning or alignment during its manufacture, wherein the component may include, but is not limited to, an equalizer which compensates for varying degrees of cable loss in CATV/MATV broadband network facilities. A trial and error procedure is implemented which includes applying a plurality of circuit modifications to a base circuit in an effort to initially approximate stabilization of signal characteristics of a signal being continuously processed through the base circuit and monitoring the signal characteristics to determine the effect of applying the approximating circuit modifications.
2. Description of the Related Art
In the communication industry, a cable television/master antenna television (CATV/MATV) broadband network collects available intelligent information from a variety of sources including antennas, satellite receivers, local originating signals, phone lines, and/or return paths of the broadband network in two-way operational networks. It is of course well recognized that CATV/MATV broadband networks utilize vast quantities of coaxial cable to establish and transmit such collected information. The frequency spectrum for these broadband networks usually range from 5 to 450, 550, 750, 860, or 1000 MHZ. Each signal is given a specific frequency in the network spectrum. The transmitted or processed signals as well as the collected information are combined for transmission onto a coaxial cable to be distributed throughout the CATV/MATV broadband network.
More specifically, operational details of this type of broadband network comprise the connection of the coaxial cable to lasers for transmission of the combined signal/information over fiber optics and the further transmission and/or amplification onto other coaxial cables by known passive or active methods. Finally, the collected signals are routed to the subscriber by means of fiber optics and cables, which are commonly referred to as the “trunk” or “back bone” of the feeder system. The feeder system comprises a variety of different broadband components, which include coaxial cables, multiple port taps, amplifiers, splitters, attenuators and equalizers. The feeder system then distributes the intelligent information, using coaxial cable, to the subscribers or end users of a CATV/MATV broadband network.
One of the most common and problematic occurrences involved with the use of extended lengths of coaxial cable, in the manner set forth above, is the existence of “cable loss”. Such losses deteriorate transmission of information to the subscriber or end user as well as derogatorily effect the trunk and feeder systems. Cable loss s more specifically evidenced by a decay of certain signal characteristics including, but not necessarily limited to, amplitude decay and frequency decay.
In order to compensate for such cable losses certain electronic components have been developed for inclusion in the broadband network communication system. Prevalent among such electronic components are equalizers and simulators. Equalizers are designed and structured to compensate for frequency and amplitude decay of signals transmitted over long distances of coaxial cable used in broadband networks, as set forth above. Simulators compensate for short spans of coaxial cable and effectively function as small pieces of coaxial cable. However, despite the concerted efforts to develop effective compensating electronic components, including equalizers, simulators, amplifiers, etc., present manufacturers of these components have encountered problems with their operational design and/or manufacture. Such problems are most commonly demonstrated by inconsistent and unreliable performance in overcoming cable losses.
A review of prior art design and manufacturing standards of equalizers and like electronic components reveals that their notoriously inconsistent performance is most likely attributable to manually performing tuning and/or alignment procedures on these electrical components in order that such components meet intended or standard operational specifications dependent on their rating and intended use. In typical fashion, such required tuning and aligning procedures are done manually resulting in increased time and cost involved in the manufacturing of such components. More importantly, no matter how skilled or well trained the worker, human error is a significant factor in the accurate performance of the required tuning, and alignment procedures. Therefore production, in terms of quantity of products produced is significantly delayed and the products that are produced are at best inconsistent in terms of meeting recognized industry standards or specifications and performance characteristics.
Accordingly, there is a long recognized problem in the segment of the communication industry dealing with the operation and performance of CATV/MATV broadband network facilities, which is directly associated with the inability to consistently compensate for cable losses associated with the use of extended lengths of coaxial cable.
SUMMARY OF THE INVENTION
The present invention is directed to a method of designing and structuring an electronic component in a manner which eliminates the necessity for manually tuning and/or aligning the component during its manufacture. As set forth in greater detail hereinafter, the method of structuring the electronic component is particularly directed to an equalizer component of the type which is intended to compensate for “cable loss” invariably present when utilizing extensive lengths of coaxial cable in Cable Television/Master Antenna Television (CATV/MATV) broadband network facilities. However, it is emphasized that the method of the present invention is not limited to the structuring of an equalizer component, of the type set forth above. To the contrary, the method of the present invention, including what may generally be referred to as a “trial and error” technique, is applicable for the initial design and structuring of a variety of different electronic components.
It is of course recognized that the aforementioned cable loss is clearly evidenced and/or attributable to the decay of certain standard characteristics of the signals as they are being transmitted over the coaxial cable. When referring to equalizer components, the signal characteristics primarily involved include both frequency and amplitude. Accordingly, electronic equalizer components, as utilized in broadband network facilities of the type set forth herein, are conventionally designed and structured to compensate for frequency and amplitude decay of signals which, as set forth above, are transmitted over long distances of coaxial cable. Naturally, other electronic components serve similar compensatory functions, wherein such additional electronic components include simulators, amplifiers, etc. Accordingly, the method of the present invention is primarily, but not exclusively, directed to the structuring of equalizer components in a manner which compensates for the decay of predetermined signal characteristics, particularly including frequency and amplitude, of signals of known strength transmitted over known lengths of coaxial cable.
Further, the method of the present invention accomplishes the structuring of equalizer components in a manner which eliminates the necessity for the manual tuning and/or alignment procedures typically associated with the manufacture of equalizers and other electronic components. As will be recognized by those familiar with this segment of the communication industry, inconsistent operational performance of conventional equalizers is attributable, at least in large part, to human errors associated with the performance of the tunning and alignment procedures and/or to the methodology of the procedures actually used. Therefore, the unique method of the present invention provides for a design and structuring of an equalizer component, as well as other ele

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of designing an equalizer and like electronic components does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of designing an equalizer and like electronic components, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of designing an equalizer and like electronic components will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149526

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.