Free wheel clutch mechanism for bicyclic drive train

Exercise devices – Involving user translation or physical simulation thereof – Bicycling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C482S119000, C482S057000

Reexamination Certificate

active

06641507

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to free wheeling devices. and more particularly to a free wheel clutch mechanism useful with crank operated exercise bicycles employing an inertia flywheel.
BACKGROUND
The benefit of exercising on a direct drive exercise bicycle is well known. Direct drive exercise bicycles typically utilize a high-inertia flywheel driven by a fixed-gear drive train. The flywheel is driven by the rider up to relatively high revolutions per minute (rpm). Because of the direct drive feature, the drive train must rotate at a fixed ratio of rpm as compared to the flywheel based on the gear ratio. One benefit of the direct drive exercise bicycle is that the direct drive gear train provides “pedal-through assistance” for the rider. The “pedal-through” feature assists the rider by pushing the pedal through the top and bottom dead center pedal positions to help make the transition smooth and efficient. Other benefits are derived from the direct drive interaction between the inertia flywheel and the crank arms to which the rider's feet are attached. The inertia flywheel provides a smooth, non-jerky pedaling rhythm which provides an efficient and rigorous exercise for the rider, especially at relatively high rpms, such as 60 to 100 rpm.
In the application of this invention to an inertia flywheel exercise bicycle, positive drive is required to rotate the inertia wheel in order to overcome regulated retardation torque applied by brake means used to provide resistance against which the rider/operator works. The inertia wheel provides means for continued drive train (wheel to crank to leg) movements during those periods when the crank is in top dead center or bottom dead center positions, where the rider's legs are somewhat weaker in providing rotary motion to the activating crank arms. The flywheel affords smooth and steady operation for the rider.
The direct drive relationship between the flywheel and the drive train is also a drawback of exercising on this type of bicycle. The direct drive relationship is inconvenient when the rider wishes to quickly stop the pedals, or loses the pedaling rhythm required to keep up with the rotating flywheel. In the usual flywheel exerciser employing such a direct drive relationship, it is necessary for the rider/operator to gradually decrease his cranking rate in order to slow down the inertia wheel. The rider cannot suddenly stop pedaling inasmuch as the inertia flywheel continues to drive the crank arms.
Of similar importance is the desirability of providing pedal assist to the rider/operator's legs when cranking at a speed slower than that necessary to positively drive the flywheel, and providing for a gradual reengagement and lockup between the pedal actuated drive shaft and the free wheeling flywheel in order to avoid abrupt impact when reengaging the moving flywheel.
It is with these issues in mind that the present invention was developed.
SUMMARY OF THE INVENTION
The present invention in general terms concerns a clutch mechanism for use on an exercise bicycle, and consequently, the present invention recognizes that it is desirable to have a free wheeling mechanism for an exerciser of the inertia flywheel type which provides means for selectively disengaging the flywheel from the drive means. The clutch mechanism allows for the beneficial direct-drive connection between the drive train and the flywheel, and also allows the drive train and flywheel to move independently from one another, or “break free”, when a sufficient force is applied to the drive train or the flywheel.
In general, the invention is an exercise bicycle including a frame having a seat and handlebars, a high-inertia flywheel having a hub at a center of rotation, the flywheel being rotatably supported on the frame at the hub, and a drive train including a drive sprocket, a crank arm attached to and extending from the drive sprocket, and a pedal attached to the crank arm, the drive train being rotatably supported by the frame. The drive train also includes a slave sprocket fixed to the flywheel at the hub, with the drive and slave sprockets connected in a direct-drive relationship, the drive train driveable in a forward and rearward directions to cause the flywheel to rotate. A clutch mechanism is positioned in engagement with the slave sprocket and the hub to create a frictional engagement between the sprocket and the hub, and to establish a break-free force. When the drive train is actuated in the forward direction, the slave sprocket and the hub move together under a mechanical engagement, and when the drive train is actuated in the rearward direction under the influence of a force greater than the break-free force, the clutch mechanism slips between the slave sprocket and the hub, allowing the slave sprocket and the flywheel to move independently of one another. There is no mechanical engagement between the sprocket and the hub in the rearward direction as there is in the forward direction, established by the one-way bearing.
More specifically, the slave sprocket defines a sprocket collar mounted on the hub and also includes an engagement collar. A one-way bearing is mounted between the sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin independently of the hub when the sprocket collar is driven in the rearward direction. An engagement flange fixedly mounted on the hub corresponds to the engagement collar, and compression means are mounted on the flywheel to bias the flange and the collar towards one another. A clutch material member is positioned between the engagement flange and the collar, and is clamped therebetween by the compression means to cause the engagement flange to move in conjunction with the sprocket collar. The engagement creates a break-free force required to cause the sprocket collar to move independently of the engagement flange. When the drive train is actuated in the forward direction, the sprocket collar and the engagement flange move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the engagement flange slips with respect to the collar, allowing the sprocket collar and the flywheel to move independently of one another.
In another embodiment, the slave sprocket defines a sprocket collar mounted on the hub and defines an inner and outer engagement collars. A one-way bearing is mounted between the sprocket collar and the hub to allow the sprocket collar to drive the hub when the sprocket collar is driven in a forward direction, and to allow the sprocket collar to spin freely on the hub when the sprocket collar is driven in the rearward direction. An inner engagement flange is fixedly mounted on the hub corresponding to the inner engagement collar, and an outer engagement flange is fixedly mounted on the hub corresponding to the outer engagement collar. Compression means are mounted on the flywheel to bias the inner flange and the inner collar towards one another, and to bias the outer flange and the outer collar towards one another. A clutch material member is positioned between the outer engagement flange and the outer collar, and between the inner engagement flange and the inner collar, and clamped therebetween by the compression means to cause the inner and outer engagement flanges to move in conjunction with the sprocket collar. The engagement creates a break-free force required to cause the sprocket collar to move independently of inner and outer engagement flanges. When the drive train is actuated in the forward direction, the sprocket collar and the inner and outer flanges move together, and when the drive train is actuated in the rearward direction and overcomes the break-free force, the inner and outer engagement flanges slip with respect to the inner and outer collars, allowing the sprocket collar and the flywheel to move independently of one another. There are other embodiments of the invention disclosed which perf

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Free wheel clutch mechanism for bicyclic drive train does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Free wheel clutch mechanism for bicyclic drive train, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Free wheel clutch mechanism for bicyclic drive train will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3148714

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.