Die to die connection method and assemblies and packages...

Active solid-state devices (e.g. – transistors – solid-state diode – Housing or package – Multiple housings

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S777000, C257S724000, C257S693000

Reexamination Certificate

active

06525413

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to multi-chip modules and, particularly, to multi-chip modules including a first semiconductor die with one or more other semiconductor dice connected directly thereto in a flip-chip fashion. The present invention also relates to methods for assembling these multi-chip modules. In addition, the present invention relates to semiconductor device packages including the inventive multi-chip modules and to methods for forming such packages.
2. State of the Art
Accompanying the trend toward manufacturing computers and other electronic devices of ever increasing speed and ever decreasing size is the need for semiconductor device components of ever increasing capabilities and, thus, having an increased number of features that consume the same or a lesser amount of space.
Multi-chip modules are one example of an approach that has been taken in the semiconductor device industry to increase the feature density of semiconductor devices. Known multi-chip modules typically include a plurality of semiconductor dice that may be electrically connected to one another indirectly by way of carrier substrates to which each of the dice are electrically connected.
U.S. Pat. No. 5,914,535 (hereinafter “the '535 Patent”), issued to Brandenburg on Jun. 22, 1999, discloses a multi-chip module including a daughter board with several semiconductor dice flip-chip bonded thereto. The daughter board includes contact pads located outside of a periphery of an area where the semiconductor dice are flip-chip bonded to facilitate flip-chip connection of the multi-chip module to a mother board with the dice of the multi-chip module being located between the daughter board and the mother board.
Another type of multi-chip module is disclosed in U.S. Pat. No. 5,719,436 (hereinafter “the '436 Pat. No. ”) and 5,793,101 (hereinafter “the '101 Pat.”), issued to Kuhn on Feb. 17, 1998 and Aug. 11, 1998, respectively. Both the '436 and '101 Patents disclose packaged multi-chip modules that include a plurality of semiconductor dice. Each package includes a substrate bearing conductive traces, to which each of the semiconductor dice are electrically connected. The semiconductor dice may be electrically connected to the substrate by way of wire bonding or flip-chip bonding. The substrate, which may comprise a flex circuit, wraps around and is supported by both surfaces of a die paddle. The conductive traces of the substrate are electrically connected to leads by bond wires. Bond pads of the semiconductor dice may also be directly electrically connected to the leads of the package.
U.S. Pat. No. RE36,613, issued to Ball on Mar. 14, 2000, discloses a multi-chip module including stacked semiconductor dice. While the dice are stacked one on top of another, they are not directly connected to one another, but rather to leads of a package including the multi-chip module.
Other types of multi-chip modules that include one or more semiconductor dice that are flip-chip bonded to a carrier are also known. None of these multi-chip modules, however, includes semiconductor dice that are directly flip-chip bonded to one another with the subsequent assembly then being flip-chip mounted to a substrate.
Keeping in mind the trend toward faster computers and other electronic devices, the use of intermediate conductive elements, such as wire bonds, and the conductive traces of carrier substrates to electrically connect the semiconductor dice of a multi-chip module is somewhat undesirable since the electrical paths of these types of connections are typically lengthy and, consequently, limit the speed with which the semiconductor dice of the multi-chip module may communicate with one another. The affects that these types of connections in conventional multi-chip modules have on the speed at which an electronic device, such as a computer, operates are particularly undesirable when one of the semiconductor dice of the multi-chip module is a microprocessor and the other semiconductor dice of the multi-chip module are semiconductor devices with which the microprocessor should quickly communicate.
The so-called system-on-a-chip (SOC) has been developed to increase the speed with which two semiconductor devices, such as a logic device (e.g., a microprocessor) and a memory device, communicate. Each of the semiconductor devices of a SOC structure are fabricated on the same substrate, providing very short connections with reduced contact resistance between two or more devices. The speed with which the two devices communicate is, therefore, increased relative to the speeds with which the separate semiconductor devices of conventional assemblies communicate.
While system-on-a-chip technology provides much quicker communication between different semiconductor devices, the fabrication processes that are used to make different types of semiconductor devices, such as logic and memory devices, differ significantly. In fact, the best processes to fabricate similar structures on different types of semiconductor devices may be very different. Moreover, the organization and locations of structures on different types of semiconductor devices may also differ significantly. Thus, it is not only difficult to merge two or more processes to facilitate the simultaneous fabrication of two or more different types of semiconductor devices on the same substrate, such simultaneous fabrication also requires process compromises for one or more of the types of semiconductor devices being fabricated, which may increase fabrication costs and decrease the performance of one or more of the different types of simultaneously fabricated semiconductor devices.
Accordingly, there is a need for a multi-chip module with increased speed of communication between the semiconductor dice thereof, the semiconductor dice of which may be fabricated by existing processes.
SUMMARY OF THE INVENTION
The present invention includes an assembly of a first semiconductor die and at least one second semiconductor die. Each second semiconductor die of the assembly is flip-chip bonded to the first semiconductor die thereof. The assembly may also include a carrier substrate configured to have the first semiconductor die connected thereto in a flip-chip fashion.
The first semiconductor die includes bond pads arranged in an array over an active surface thereof. While some of the bond pads of the first semiconductor die are arranged on the active surface thereof so as to correspond to a footprint of bond pads of each second semiconductor die, others of the bond pads of the first semiconductor die are positioned so as to be exposed laterally beyond outer peripheries of one or more second semiconductor dice upon assembly thereof with the first semiconductor die. Each of the bond pads of the first semiconductor die that corresponds to a bond pad of a second semiconductor die may be recessed relative to the active surface so as to facilitate alignment and electrical connection with conductive structures protruding from the bond pads of the second semiconductor die. Each of the other, outer bond pads of the first semiconductor die, which may also be recessed relative to the active surface, may have protruding therefrom a conductive structure. Exemplary conductive structures include, but are not limited to, balls, bumps, columns, and pillars of conductive material, such as a solder, another metal or metal alloy, a conductive epoxy, a conductor-filled epoxy, or a z-axis conductive elastomer. These conductive structures facilitate electrical connection of an assembly including the first semiconductor die to a carrier for such an assembly. The first semiconductor die may be a microprocessor die or a die of any other known semiconductor device type.
Each second semiconductor die includes an active surface with a plurality of bond pads thereon. The bond pads of each second semiconductor die may be arranged on the active surface thereof in any manner known in the art, but are preferably disposed across the surfa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Die to die connection method and assemblies and packages... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Die to die connection method and assemblies and packages..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Die to die connection method and assemblies and packages... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3146186

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.